Part 111

APPLICATIONS

83

8 Robot Control

An important area of application of neural networks is in the field of robotics. Usually, these
networks are designed to direct a manipulator, which is the most important form of the industrial
robot, to grasp objects, based on sensor data. Another applications include the steering and
path-planning of autonomous robot vehicles.

In robotics, the major task involves making movements dependent on sensor data. There
are four, related, problems to be distinguished (Craig, 1989):

Forward kinematics. Kinematics is the science of motion which treats motion without regard
to the forces which cause it. Within this science one studies the position, velocity, acceleration,
and all higher order derivatives of the position variables. A very basic problem in the study of
mechanical manipulation is that of forward kinematics. This is the static geometrical problem of
computing the position and orientation of the end-effector (‘hand’) of the manipulator. Specifi-
cally, given a set of joint angles, the forward kinematic problem is to compute the position and
orientation of the tool frame relative to the base frame (see figure 8.1).

AN

tool frame

w

base frame

Figure 8.1: An exemplar robot manipulator.

Inverse kinematics. This problem is posed as follows: given the position and orientation of
the end-effector of the manipulator, calculate all possible sets of joint angles which could be used
to attain this given position and orientation. This is a fundamental problem in the practical use
of manipulators.

The inverse kinematic problem is not as simple as the forward one. Because the kinematic
equations are nonlinear, their solution is not always easy or even possible in a closed form. Also,
the questions of existence of a solution, and of multiple solutions, arise.

Solving this problem is a least requirement for most robot control systems.

85

86 CHAPTER 8. ROBOT CONTROL

Dynamics. Dynamics is a field of study devoted to studying the forces required to cause
motion. In order to accelerate a manipulator from rest, glide at a constant end-effector velocity,
and finally decelerate to a stop, a complex set of torque functions must be applied by the joint
actuators. In dynamics not only the geometrical properties (kinematics) are used, but also the
physical properties of the robot are taken into account. Take for instance the weight (inertia)
of the robotarm, which determines the force required to change the motion of the arm. The
dynamics introduces two extra problems to the kinematic problems.

1. The robot arm has a ‘memory’. Its responds to a control signal depends also on its history
(e.g. previous positions, speed, acceleration).

2. If a robot grabs an object then the dynamics change but the kinematics don’t. This is
because the weight of the object has to be added to the weight of the arm (that’s why
robot arms are so heavy, making the relative weight change very small).

Trajectory generation. To move a manipulator from here to there in a smooth, controlled
fashion each joint must be moved via a smooth function of time. Exactly how to compute these
motion functions is the problem of trajectory generation.

In the first section of this chapter we will discuss the problems associated with the positioning
of the end-effector (in effect, representing the inverse kinematics in combination with sensory
transformation). Section 8.2 discusses a network for controlling the dynamics of a robot arm.
Finally, section 8.3 describes neural networks for mobile robot control.

8.1 End-effector positioning

The final goal in robot manipulator control is often the positioning of the hand or end-effector in
order to be able to, e.g., pick up an object. With the accurate robot arm that are manufactured,
this task is often relatively simple, involving the following steps:

1. determine the target coordinates relative to the base of the robot. Typically, when this
position is not always the same, this is done with a number of fixed cameras or other
sensors which observe the work scene, from the image frame determine the position of the
object in that frame, and perform a pre-determined coordinate transformation;

2. with a precise model of the robot (supplied by the manufacturer), calculate the joint angles
to reach the target (i.e., the inverse kinematics). This is a relatively simple problem,;

3. move the arm (dynamics control) and close the gripper.

The arm motion in point 3 is discussed in section 8.2. Gripper control is not a trivial matter at
all, but we will not focus on that.

Involvement of neural networks. So if these parts are relatively simple to solve with a
high accuracy, why involve neural networks? The reason is the applicability of robots. When
‘traditional’ methods are used to control a robot arm, accurate models of the sensors and manip-
ulators (in some cases with unknown parameters which have to be estimated from the system’s
behaviour; yet still with accurate models as starting point) are required and the system must
be calibrated. Also, systems which suffer from wear-and-tear (and which mechanical systems
don’t?) need frequent recalibration or parameter determination. Finally, the development of
more complex (adaptive!) control methods allows the design and use of more flexible (i.e., less
rigid) robot systems, both on the sensory and motory side.

8.1. END-EFFECTOR POSITIONING 87

8.1.1 Camera-robot coordination is function approximation

The system we focus on in this section is a work floor observed by a fixed cameras, and a robot
arm. The visual system must identify the target as well as determine the visual position of the
end-effector.

The target position x'?'8t together with the visual position of the hand x
the neural controller A/(-). This controller then generates a joint position 6 for the robot:

0= N(xtarget’xhand)‘ (81)

hand yre input to

We can compare the neurally generated © with the optimal ¢ generated by a fictitious perfect
controller R(-):
90 — R(xtarget’xhand)‘ (8.2)

The task of learning is to make the A/ generate an output ‘close enough’ to 0g.
There are two problems associated with teaching N(-):

1. generating learning samples which are in accordance with eq. (8.2). This is not trivial,
since in useful applications R (-) is an unknown function. Instead, a form of self-supervised
or unsupervised learning is required. Some examples to solve this problem are given below;

2. constructing the mapping A/(:) from the available learning samples. When the (usually
randomly drawn) learning samples are available, a neural network uses these samples to
represent the whole input space over which the robot is active. This is evidently a form
of interpolation, but has the problem that the input space is of a high dimensionality, and
the samples are randomly distributed.

We will discuss three fundamentally different approaches to neural networks for robot end-
effector positioning. In each of these approaches, a solution will be found for both the learning
sample generation and the function representation.

Approach 1: Feed-forward networks

When using a feed-forward system for controlling the manipulator, a self-supervised learning
system must be used.

One such a system has been reported by Psaltis, Sideris and Yamamura (Psaltis, Sideris, &
Yamamura, 1988). Here, the network, which is constrained to two-dimensional positioning of
the robot arm, learns by experimentation. Three methods are proposed:

1. Indirect learning.

In indirect learning, a Cartesian target point x in world coordinates is generated, e.g.,
by a two cameras looking at an object. This target point is fed into the network, which
generates an angle vector 6. The manipulator moves to position 0, and the cameras
determine the new position X' of the end-effector in world coordinates. This X' again is
input to the network, resulting in 8. The network is then trained on the error ¢; = 0 — 0’
(see figure 8.2).

However, minimisation of €; does not guarantee minimisation of the overall error € = x —x'.
For example, the network often settles at a ‘solution’ that maps all X’s to a single 0 (i.e.,
the mapping I).

2. General learning.

The method is basically very much like supervised learning, but here the plant input
© must be provided by the user. Thus the network can directly minimise | — ©’|. The
success of this method depends on the interpolation capabilities of the network. Correct
choice of © may pose a problem.

88

CHAPTER 8. ROBOT CONTROL

X Neurd et |
Network
, *x\[\leural
0 Network

AN

Figure 8.2: Indirect learning system for robotics. In each cycle, the network is used in two different

places: first in the forward step, then for feeding back the error.

3. Specialised learning.

Keep in mind that the goal of the training of the network is to minimise the error at
the output of the plant: ¢ = x — x’. We can also train the network by ‘backpropagating’
this error trough the plant (compare this with the backpropagation of the error in Chap-
ter 4). This method requires knowledge of the Jacobian matrix of the plant. A Jacobian
matrix of a multidimensional function F' is a matrix of partial derivatives of F, i.e., the
multidimensional form of the derivative. For example, if we have Y = F(X), i.e.,

y1 = filz1, z2,...,20),
y2 = fo(z1,22,...,20),
ym = fm(mlamQ)"'uxn)
then
8f1 df1 df1
dyp = —=4 Bt Y
Y1 8561 r1 + D9 z2 + + D, T
afz dfa dfa
dys = —=4 B Y
Y2 8301 oLt Oxo w2+ + oz, v
0Ym = R ze 4 ... Sxy,
Y 8$1 1+ Do To + + i T
or oF
Y = —6X. 8.3
X (8.3)
Eq. (8.3) is also written as
§Y = J(X)6X (8.4)

where J is the Jacobian matrix of F. So, the Jacobian matrix can be used to calculate the
change in the function when its parameters change.

oPp;
o[

where P;(0) the ith element of the plant output for input ©. The learning rule applied
here regards the plant as an additional and unmodifiable layer in the neural network. The

Now, in this case we have

8.1. END-EFFECTOR POSITIONING 89

X Newd 0 gy X
//Network -

Figure 8.3: The system used for specialised learning.
total error ¢ = x — X’ is propagated back through the plant by calculating the §; as in
eq. (4.14):

OF;(8)
06,

5]' = —7:,(3])252
52' = I; —J,‘;-,

where ¢ iterates over the outputs of the plant. When the plant is an unknown function,
BI;i_e(je) can be approximated by

8PZ(9) ~ R(B—i—hejej) —B-(B) (8 6)
90; h ‘

where e; is used to change the scalar 6; into a vector. This approximate derivative can
be measured by slightly changing the input to the plant and measuring the changes in the
output.

A somewhat similar approach is taken in (Krose, Korst, & Groen, 1990) and (Smagt & Krose,
1991). Again a two-layer feed-forward network is trained with back-propagation. However,
instead of calculating a desired output vector the input vector which should have invoked the
current output vector is reconstructed, and back-propagation is applied to this new input vector
and the existing output vector.

The configuration used consists of a monocular manipulator which has to grasp objects. Due
to the fact that the camera is situated in the hand of the robot, the task is to move the hand
such that the object is in the centre of the image and has some predetermined size (in a later
article, a biologically inspired system is proposed (Smagt, Krose, & Groen, 1992) in which the
visual flow-field is used to account for the monocularity of the system, such that the dimensions
of the object need not to be known anymore to the system).

One step towards the target consists of the following operations:

1. measure the distance from the current position to the target position in camera domain,
X;

2. use this distance, together with the current state © of the robot, as input for the neural
network. The network then generates a joint displacement vector AO;

3. send AO to the manipulator;

4. again measure the distance from the current position to the target position in camera
domain, x';

5. calculate the move made by the manipulator in visual domain, x — i“Rx’, where ,’;HR is
the rotation matrix of the second camera image with respect to the first camera image;

90 CHAPTER 8. ROBOT CONTROL

6. teach the learning pair (x — ‘"1 Rx/, ©; A©) to the network.

This system has shown to learn correct behaviour in only tens of iterations, and to be very
adaptive to changes in the sensor or manipulator (Smagt & Krose, 1991; Smagt, Groen, &
Krose, 1993).

By using a feed-forward network, the available learning samples are approximated by a single,
smooth function consisting of a summation of sigmoid functions. As mentioned in section 4, a
feed-forward network with one layer of sigmoid units is capable of representing practically any
function. But how are the optimal weights determined in finite time to obtain this optimal
representation? Experiments have shown that, although a reasonable representation can be
obtained in a short period of time, an accurate representation of the function that governs the
learning samples is often not feasible or extremely difficult (Jansen et al., 1994). The reason
for this is the global character of the approximation obtained with a feed-forward network with
sigmoid units: every weight in the network has a global effect on the final approximation that
is obtained.

Building local representations is the obvious way out: every part of the network is responsible
for a small subspace of the total input space. Thus accuracy is obtained locally (Keep It Small
& Simple). This is typically obtained with a Kohonen network.

Approach 2: Topology conserving maps

Ritter, Martinetz, and Schulten (Ritter, Martinetz, & Schulten, 1989) describe the use of a
Kohonen-like network for robot control. We will only describe the kinematics part, since it is
the most interesting and straightforward.

The system described by Ritter et al. consists of a robot manipulator with three degrees of
freedom (orientation of the end-effector is not included) which has to grab objects in 3D-space.
The system is observed by two fixed cameras which output their (z,y) coordinates of the object
and the end effector (see figure 8.4).

N
CO3

i
il

B
0
7T

Ly
i

>
s
C

Loy
s
e

Figure 8.4: A Kohonen network merging the output of two cameras.

Each run consists of two movements. In the gross move, the observed location of the object
X (a four-component vector) is input to the network. As with the Kohonen network, the neuron
k with highest activation value is selected as winner, because its weight vector wy, is nearest to
X. The neurons, which are arranged in a 3-dimensional lattice, correspond in a 1 — 1 fashion with
subregions of the 3D workspace of the robot, i.e., the neuronal lattice is a discrete representation
of the workspace. With each neuron a vector © and Jacobian matrix A are associated. During
gross move Oy is fed to the robot which makes its move, resulting in retinal coordinates x4 of
the end-effector. To correct for the discretisation of the working space, an additional move is

8.2. ROBOT ARM DYNAMICS 91

made which is dependent of the distance between the neuron and the object in space wy — x;
this small displacement in Cartesian space is translated to an angle change using the Jacobian
Ap:

ofinal — @, + Ap(x —wy) (8.7)

which is a first-order Taylor expansion of 012l The final retinal coordinates of the end-effector
after this fine move are in x;.

Learning proceeds as follows: when an improved estimate (0, A)* has been found, the fol-
lowing adaptations are made for all neurons j:

anew — wjold + ’)’(t) gjk(t) (X _ wjold) :
(8, A = (8, A5 + /(1) g (1) ((8,4)] — (8,4)3).

If gjr(t) = g;-k(t) = Jjj, this is similar to perceptron learning. Here, as with the Kohonen
learning rule, a distance function is used such that g;(t) and g;-k(t) are Gaussians depending on
the distance between neurons j and k& with a maximum at j = k (cf. eq. (6.6)).

An improved estimate (0, A)* is obtained as follows.

0" = 0, + Ak(X — Xf), (8.8)
(xy _xg)T
AY = Ap + Ag(Xx — Wi — X5 +Xxy) X - (8.9)
P20 Iy =l
AXT
= A + (A0 — AR AX) —.
| Ax||?

In eq. (8.8), the final error x — x¢ in Cartesian space is translated to an error in joint space via
multiplication by Ag. This error is then added to O to constitute the improved estimate 0*
(steepest descent minimisation of error).

In eq. (8.9), Ax = Xy —Xg, i.e., the change in retinal coordinates of the end-effector due to the
fine movement, and A® = A (x —wy), i.e., the related joint angles during fine movement. Thus
eq. (8.9) can be recognised as an error-correction rule of the Widrow-Hoff type for Jacobians A.

It appears that after 6,000 iterations the system approaches correct behaviour, and that after
30,000 learning steps no noteworthy deviation is present.

8.2 Robot arm dynamics

While end-effector positioning via sensor-robot coordination is an important problem to solve,
the robot itself will not move without dynamic control of its limbs.

Again, accurate control with non-adaptive controllers is possible only when accurate models
of the robot are available, and the robot is not too susceptible to wear-and-tear. This requirement
has led to the current-day robots that are used in many factories. But the application of neural
networks in this field changes these requirements.

One of the first neural networks which succeeded in doing dynamic control of a robot arm
was presented by Kawato, Furukawa, and Suzuki (Kawato, Furukawa, & Suzuki, 1987). They
describe a neural network which generates motor commands from a desired trajectory in joint
angles. Their system does not include the trajectory generation or the transformation of visual
coordinates to body coordinates.

The network is extremely simple. In fact, the system is a feed-forward network, but by
carefully choosing the basis functions, the network can be restricted to one learning layer such
that finding the optimal is a trivial task. In this case, the basis functions are thus chosen that
the function that is approximated is a linear combination of those basis functions. This approach
is similar to that presented in section 4.5.

92 CHAPTER 8. ROBOT CONTROL

Dynamics model. The manipulator used consists of three joints as the manipulator in fig-
ure 8.1 without wrist joint. The desired trajectory ©4(t), which is generated by another subsys-
tem, is fed into the inverse-dynamics model (figure 8.5). The error between 04(t) and ©(t) is
fed into the neural model.

inverse dynamics
model

T o(t)

+
manipul ator
T (O P

6 () T, @

+

Figure 8.5: The neural model proposed by Kawato et al.

The neural model, which is shown in figure 8.6, consists of three perceptrons, each one
feeding in one joint of the manipulator. The desired trajectory 04 = (041,642, 043) is fed into 13
nonlinear subsystems. The resulting signals are weighted and summed, such that

13
Ti(t) = Y wiww, (k=1,2,3), (8.10)
=1
with

z11 = fi(0a1(t),042(t), 0as(t)),
zi2 = 213 = G1(0a1(t), 0a2(t), 0as(2)),

and f; and g; as in table 8.1.

f1
f13
®
. i T
1
. x5
° T, (t
. X1y 3 ()
g
13 < (t)
edl (t) 13,3
0p (O ol
O3 () 27 1,0

Figure 8.6: The neural network used by Kawato et al. There are three neurons, one per joint in the
robot arm. Each neuron feeds from thirteen nonlinear subsystems. The upper neuron is connected
to the rotary base joint (cf. joint 1 in figure 8.1), the other two neurons to joints 2 and 3.

8.2. ROBOT ARM DYNAMICS 93

l f1(01,02,03) 91(91,92,93)
1 0]_ 02
2 01 SiIl2 02 03
3 | 6; cos? 6 6> cos 03
4 9.1 SiIl2 (02 —+ 03) é3 COSs 03
516, 0052(02 +63) 0f sin @3 cos 62
6 | 61 sin 6, sin(62 + 63) 0% sin(f2 + 63) cos(f2 + 03)
7 6?10:2 sin 62 cos 62 Gf sin 63 cos(02 + 03)
8 | 0162 sin(f2 + 03) cos(02 + 63) 0% cos 0 sin(62 + 63)
9 6?10:2 sin 6> cos(f2 + 03) 0% sin 65

10 | 6103 cos 83 sin(f2 + 03) 02 sin 63

11 0:10:3 sin(02 —+ 03) COS(02 —+ 03) 0:20'3 sin 03

12 0103 SiIl 02 COS(02 =+ 03) 02

13 | 6, 05

Table 8.1: Nonlinear transformations used in the Kawato model.
The feedback torque T#(t) in figure 8.5 consists of
dOy(t
Tfk(t) = ka(edk(t) — ek(t)) + Kk df), (k =1,2, 3),
K, =0 unless |65 (t) — 041 (objective point)| < e.
The feedback gains K, and K, were computed as (517.2,746.0,191.4)7 and (16.2,37.2,8.4)7.
Next, the weights adapt using the delta rule
dwik

v = vkl = zi (T — Tir), (k=1,2,3). (8.11)

A desired move pattern is shown in figure 8.7. After 20 minutes of learning the feedback
torques are nearly zero such that the system has successfully learned the transformation. Al-
though the applied patterns are very dedicated, training with a repetitive pattern sin(wgt), with

wy i wyiws=1:v2:+/3 is also successful.
el

L

10

30 t/s

Figure 8.7: The desired joint pattern for joints 1. Joints 2 and 3 have similar time patterns.

The usefulness of neural algorithms is demonstrated by the fact that novel robot architectures,
which no longer need a very rigid structure to simplify the controller, are now constructed. For
example, several groups (Katayama & Kawato, 1992; Hesselroth, Sarkar, Smagt, & Schulten,
1994) report on work with a pneumatic musculo-skeletal robot arm, with rubber actuators re-
placing the DC motors. The very complex dynamics and environmental temperature dependency
of this arm make the use of non-adaptive algorithms impossible, where neural networks succeed.

94 CHAPTER 8. ROBOT CONTROL

8.3 Mobile robots

In the previous sections some applications of neural networks on robot arms were discussed. In
this section we focus on mobile robots. Basically, the control of a robot arm and the control
of a mobile robot is very similar: the (hierarchical) controller first plans a path, the path is
transformed from Cartesian (world) domain to the joint or wheel domain using the inverse
kinematics of the system and finally a dynamic controller takes care of the mapping from set-
points in this domain to actuator signals. However, in practice the problems with mobile robots
occur more with path-planning and navigation than with the dynamics of the system. Two
examples will be given.

8.3.1 Model based navigation

Jorgensen (Jorgensen, 1987) describes a neural approach for path-planning. Robot path-planning
techniques can be divided into two categories. The first, called local planning relies on informa-
tion available from the current ‘viewpoint’ of the robot. This planning is important, since it is
able to deal with fast changes in the environment. Unfortunately, by itself local data is generally
not adequate since occlusion in the line of sight can cause the robot to wander into dead end
corridors or choose non-optimal routes of travel. The second situation is called global path-
planning, in which case the system uses global knowledge from a topographic map previously
stored into memory. Although global planning permits optimal paths to be generated, it has its
weakness. Missing knowledge or incorrectly selected maps can invalidate a global path to an ex-
tent that it becomes useless. A possible third, ‘anticipatory’ planning combined both strategies:
the local information is constantly used to give a best guess what the global environment may
contain.

Jorgensen investigates two issues associated with neural network applications in unstructured
or changing environments. First, can neural networks be used in conjunction with direct sensor
readings to associatively approximate global terrain features not observable from a single robot
perspective. Secondly, is a neural network fast enough to be useful in path relaxation planning,
where the robot is required to optimise motion and situation sensitive constraints.

For the first problem, the system had to store a number of possible sensor maps of the
environment. The robot was positioned in eight positions in each room and 180° sonar scans
were made from each position. Based on these data, for each room a map was made. To be able
to represent these maps in a neural network, the map was divided into 32 x 32 grid elements,
which could be projected onto the 32 x 32 nodes neural network. The maps of the different
rooms were ‘stored’ in a Hopfield type of network. In the operational phase, the robot wanders
around, and enters an unknown room. It makes one scan with the sonar, which provides a partial
representation of the room map (see figure 8.8). This pattern is clamped onto the network, which
will regenerate the best fitting pattern. With this information a global path-planner can be used.
The results which are presented in the paper are not very encouraging. With a network of 32 x 32
neurons, the total number of weights is 1024 squared, which costs more than 1 Mbyte of storage
if only one byte per weight is used. Also the speed of the recall is low: Jorgensen mentions a
recall time of more than two and a half hour on an IBM AT, which is used on board of the
robot.

Also the use of a simulated annealing paradigm for path planning is not proving to be an
effective approach. The large number of settling trials (> 1000) is far too slow for real time,
when the same functions could be better served by the use of a potential field approach or
distance transform.

8.3. MOBILE ROBOTS 95

Sasaa, mfiasemacslinaseaaafiasaas
Salm

:H
1
i
I
:H

\ -
I
I I

Figure 8.8: Schematic representation of the stored rooms, and the partial information which is
available from a single sonar scan.

8.3.2 Sensor based control

Very similar to the sensor based control for the robot arm, as described in the previous sections,
a mobile robot can be controlled directly using the sensor data. Such an application has been
developed at Carnegy-Mellon by Touretzky and Pomerleau. The goal of their network is to drive
a vehicle along a winding road. The network receives two type of sensor inputs from the sensory
system. One is a 30 x 32 (see figure 8.9) pixel image from a camera mounted on the roof of the
vehicle, where each pixel corresponds to an input unit of the network. The other input is an
8 x 32 pixel image from a laser range finder. The activation levels of units in the range finder’s
retina represent the distance to the corresponding objects.

sharp left straight ahead sharp right

units

29 hidden
units

8x32 range finder
input retina

30x32 video input retina
Figure 8.9: The structure of the network for the autonomous land vehicle.

The network was trained by presenting it samples with as inputs a wide variety of road images
taken under different viewing angles and lighting conditions. 1,200 Images were presented,

96 CHAPTER 8. ROBOT CONTROL

40 times each while the weights were adjusted using the back-propagation principle. The authors
claim that once the network is trained, the vehicle can accurately drive (at about 5 km/hour)
along ‘... a path though a wooded area adjoining the Carnegie Mellon campus, under a variety
of weather and lighting conditions.” The speed is nearly twice as high as a non-neural algorithm
running on the same vehicle.

Although these results show that neural approaches can be possible solutions for the sensor
based control problem, there still are serious shortcomings. In simulations in our own laboratory,
we found that networks trained with examples which are provided by human operators are not
always able to find a correct approximation of the human behaviour. This is the case if the
human operator uses other information than the network’s input to generate the steering signal.
Also the learning of in particular back-propagation networks is dependent on the sequence of
samples, and, for all supervised training methods, depends on the distribution of the training
samples.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

