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ABSTRACT 
 

Molecular Dynamics Simulation is an extremely powerful technique which involves 

solving the many-body problem in contexts relevant to the study of matter at the atomic 

level. The method allows the prediction of the static and dynamic properties of 

substances directly from the underlying interactions between the molecules. Because 

there is no alternative approach capable of handling such a broad range of problems at the 

required level of detail, molecular dynamics methods have proved themselves 

indispensable in both pure and applied research. Molecular Dynamics Simulations are 

computationally very intensive and hence an ideal application of Parallel Programming 

concepts. 

 

The purpose of this project is to develop software in Java that uses MD Simulation 

technique to simulate the interaction between atoms in a group of molecules which 

interact due to Lennard-Jones potential (or any other similar system whose motion can be 

simulated by stepping through discrete instants of time). 

 

Multi-threaded programming that can be executed on more than one processor is used to 

improve the efficiency of the system. Different parallel algorithms based on 1) 

synchronization mechanism, 2) the pattern of thread creation and 3) Granularity, were 

implemented and performance measurements were done on them to predict the best 

possible combination for a system such as Molecular Dynamics Simulation.
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CHAPTER 1: VISION DOCUMENT 
 
 

1. Introduction 

 
 
1.1. Motivation 

 Molecular Dynamics (MD) Simulation is an extremely powerful technique which 

involves solving the many-body problem in contexts relevant to the study of matter at the 

atomic level. The method allows the prediction of the static and dynamic properties of 

substances directly from the underlying interactions between the molecules. Because 

there is no alternative approach capable of handling such a broad range of problems at the 

required level of detail, molecular dynamics methods have proved themselves 

indispensable in both pure and applied research. However, Molecular Dynamics 

Simulations are computationally very intensive and hence an ideal application of Parallel 

Programming concepts. These ideas motivated me to use my knowledge of parallel 

programming to develop a software for MD Simulation which can run on multiple 

processors and hence computationally efficient.  

  

1.2. Molecular Dynamics Simulation 

       Molecular dynamics [1] simulation is a technique where the time evolution of a set 

of atoms is followed by integrating their equations of motion. In molecular dynamics we 

follow the laws of classical mechanics, and most notably Newton’s law: Fi = miai    for 

each atom i in a system constituted by N atoms. Here, mi is the atom mass, ai = d2ri/dt2    

its acceleration, and Fi, the force acting upon it, due to the interaction with other atoms. 

 1



 

2. Project Overview 

 

2.1. Purpose 

 The purpose of this project is to develop software in Java that uses MD 

Simulation technique to simulate the interaction between atoms in a group of molecules 

(or any other similar system whose motion can be simulated by stepping through discrete 

instants of time).  

 

2.2. Goals 

 The goals of this project are to develop robust and efficient software, enhance the 

usability of the system with good documentation of the design and the overall system, 

and make the system as self sufficient as possible and unambiguous specification of the 

constraints under which the system will work.  

 

2.3. Direction 

 The interaction force existing between molecules considered here is called the 

Lennard-jones potential. The Lennard-Jones [2] potential is mildly attractive as two 

uncharged molecules or atoms approach one another from a distance, but strongly 

repulsive when they approach too close. The resulting potential is shown in Figure below. 

At equilibrium, the pair of atoms or molecules tends to go toward a separation 

corresponding to the minimum of the Lennard-Jones potential (a separation of 0.39 

nanometers for the case shown in the figure below.)  
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 Figure 1 : Lennard-Jones potential 

 
The potential resulting from these attractive and repulsive interactions is called the 

Lennard--Jones potential and is described by the following equation:  

 

 and  are the specific Lennard--Jones parameters, different for different 

interacting particles. r is the distance between the interacting particles. For the current 

system, the values of these parameters are: σ = 0.3 Nanometers and ε = 1.0 KJ/mole. 

The Lennard--Jones force between two atoms is given by the equation:  

 

This interaction force existing between the atoms causes them to accelerate and move. 

This system is simulated in small time steps. At each time step we have to calculate the 

Lennard-jones’s force on each atom due to the interaction with all the other atoms and 

update its velocity and position.  These interactions are effective until a certain length 

called the interaction length. Here it’s taken as 1.0 Nanometers.   
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 The software takes input from three different files: 1) a data file (.dat) which 

supplies parameters like the total number of particles, mass of each particle, number of 

dynamics steps etc. The file lists in a specific format the value of the parameter, the 

variable name used to hold the parameter and a brief description of the parameter. 2) A 

file in the .pdb (protein data bank) format [3]   that supplies the program with the initial 

coordinates of the atoms in space. 3) A data file from which the initial velocities of 

particles in all dimensions could be read by the program. The velocities are read from this 

file only for testing purposes. Otherwise, the program calculates the velocities for all the 

atoms based on a random Gaussian distribution. Various string handling methods of the 

Java language are used to extract the exact numerical values from the formatted input 

files. 

 The program calculates the force on each atom due to all the atoms that are within 

the interaction length. This force is used to update the velocities and positions and 

calculate the potential energy, kinetic energy of the particles and temperature of the 

system at every time step. At the end of the simulation, the averages and fluctuations of 

each of these quantities are calculated. These values are displayed on the console for 

every certain number of time steps (indicated in the input data file). This data along with 

the averages and fluctuations is written to an output file and the final x, y, z coordinates 

of all the particles in system is written to a file in the pdb format. 
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2.4. Features 

 Multi-threaded programming that can be executed on more than one processor 

will be used to improve the efficiency of the system. These parallel programs will be 

implemented using different designs [4] based on, 

• Synchronization mechanism i.e. Message Passing versus Barrier, Monitor etc. 

•  The pattern of thread creation i.e. grid shaped where each thread only 

communicates only with its neighbors versus a vertical pipeline where each 

thread communicates with its upper and bottom neighbors. 

•  Granularity i.e.  Course-grained versus fine-grained, which is determined by the 

frequency of thread synchronization or communication relative to the amount of 

computation done. 

The performance of these parallel programs will be compared to predict the best 

suited design for a system such as the Molecular Dynamics Simulation. 

 

2.5 Risks  

 Since the project is based extensively on parallel programming, all the risks 

inherent to concurrent programs apply to this project. Some of them are 1) Safety – 

Parallel activities interfering with each other. The programmer must maintain crucial 

invariants to avoid this situation. 2) Liveness - The programmer must make sure that all 

threads don’t just stop, without finishing their work.  3) Deadlock – The programmer 

should avoid a deadlock situation where every thread is waiting on each other to make 

progress, thus no progress is made. Also, one of the biggest challenges in this project is to 
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achieve the maximum speed-up and efficiency for the parallel programs especially when 

run on a distributed system. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6



CHAPTER 2: SOFTWARE REQUIREMENTS 
SPECIFICATION 

 

1. Introduction 

1.1 Purpose 

The purpose of this chapter is to specify requirements to explain the behavior of 

the proposed software system. The audience of this chapter is physics, biochemistry 

and software researchers, designers, and students who are interested in applying 

Molecular Dynamics Simulation techniques to simulate physical systems. 

1.2 Overview 

The purpose of this project is to develop a software package that uses Molecular 

dynamics simulation techniques to simulate the interaction between the atoms in a 

group of molecules (or any other similar system whose motion can be simulated by 

stepping through discrete instants of time).  

1.3 Scope 

The software developed in this project will display the coordinates, velocities and 

the physical properties of the system such as potential energy, temperature as a 

function of time, starting form a given initial configuration. Algorithms and Software 

Patterns used might not be suitable for all kinds of systems. For example this software 

uses the Particle-Particle method for the simulation, which is one of the three 

scientific software patterns used in dynamic systems. Appropriateness of the model 

should be considered before using this software. 
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1.4 Definitions, Acronyms and Abbreviations 

 

Molecular Dynamics Terms: 

 

Molecular Dynamics Simulation: A technique where the time evolution of a set of 

atoms is followed by integrating their equations of motion. 

 

Lennard-jones potential:  An interaction potential existing between atoms which are 

considered here.  

 

PDB:  Protein Data Bank 

 

Potential Energy:  The energy resulting from position or configuration of an atom. 

 

Kinetic Energy:  The energy resulting from motion of an atom. 

 

Velocity: The rate of motion of an atom in a particular direction. 

 

Temperature: A measure of the Kinetic energy in atoms of a substance. 

 

Cut-off Distance: Distance between the atoms above which there are no interaction 

forces. 
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Software Terms: 

 

Pattern:  Extension of Object-oriented methods of analysis and design 

 

SLOC: Source Lines of Code 

 

IEEE: Institute for Electrical and Electronic Engineers 

 

SRS: Software Requirements Specifications 

 

SQA: Software Quality Assurance 

2. Overall Description 

2.1 Product Perspective 

2.1.1 Approach 

There are three software patterns [5] [6] available for dynamic systems simulation, 

Particle-Particle (PP) method, Particle-Mesh (PM) method and Particle-Particle –Particle-

Mesh (P3M) method. For this project, the PP method is used.  Various designs for a 

parallel program based on 1) Synchronization mechanism, 2) the pattern of thread 

creation and 3) Granularity, are implemented. Performance measurements such as 

measuring the speed up as a function of the number of threads and granularity were done 

on each design.  
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2.1.2 Applications 

There are numerous applications of Molecular Dynamics in many fields of study, for e.g. 

Biopolymers, Biomedicine, and Biochemistry etc.  MD Simulations allow prediction of 

properties for novel materials, which have not yet been synthesized, and for existing 

materials whose properties are difficult to measure or poorly understood. The results of 

the current simulation of molecules are used in protein folding studies. 

 

2.1.3 Constraints 

1. Data is read from three files, which should be in a specific format. 

• The Data file (.dat) should have the value of the parameter as first ten 

characters, the variable used for that parameter as next eight characters and 

the description of the parameter on rest of the line. 

• The file from which velocities are read (.in) should display the velocity in x – 

direction as the first twenty five characters, velocity in y – directions as next 

twenty five and velocity in z- direction as the last twenty five characters in a 

line. All the three values for an atom should be in one line. 

• The file from which the coordinates are read (.pdb) should be in the protein 

data bank format for atomic coordinate files. 

2. Stability and scalability issues are not mentioned extensively. 
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2.2 Product Functions 

 

assign: Assigns the atoms to the partitions in a thread, depending on their coordinates. 

 

force: calculates the force on an atom due to all the other atoms within the cut-off 

distance and updates the potential energy of the system. 

 

calculateEnergies: calculates the potential, kinetic and the total energies at the current 

step of the simulation. 

 

incrementVel: increments the velocity of the atoms depending on the forces of 

interaction at each step. 

 

displace: displaces the atoms depending on the increment in velocity at each step. 

 

CalculateAvgsAndFlucs:  calculates the average energies and the fluctuations in 

energies during the entire simulation. 

 

printEnergies: prints the kinetic energy, potential energy, total energy and the 

temperature of the system for every given number of steps. 
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2.3 User Characteristics 

This Product is developed for applications in scientific computing involving molecular 

dynamics simulations. Therefore, the user is assumed to have necessary background in 

solving equations of motion and molecular dynamics simulations. It is also assumed that 

the user has basic computing knowledge and Java Programming background. 

 

2.4 Assumptions and Dependencies 

It is assumed that user has basic background has discussed under User Characteristics and 

JDK version 1.3 or above is installed. 

 

2.5 Apportioning of Requirements 

In future version implementations of the simulation programs, message passing interface 

could be implemented so that the program could be run on a distributed system with more 

number of processors to increase performance. 

 

3. Specific Requirements 

 

3.1 External Interface Requirements 

 

3.1.1 User Interfaces 

• Input screen to enter the program arguments such as the number of threads to be 

created. 

• Screen to display the results of simulation. 
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3.1.2 Hardware Interface 

As the application is developed in java, it is platform independent. 

 

3.1.3 Software Interface 

• Java JDK Library. 

 

3.2 Classes/Attributes 

   The figure on the following page shows the Object Model/ Class Diagram of the 

project. The description of all the classes and their functions has been outlined in the 

Chapter 8, Component Design. 
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Figure 2: Object Model 

 

3.3 General Requirements 

• To produce a neat interface so that it is easy for the user to understand and use. 

• To produce statistical data to show the speed improvements. 

• To produce API documentation in JavaDoc style, explaining the classes and their 

corresponding methods and attributes 

• To produce a user manual explaining, with detailed instructions of how to use the 

application. 

• Design specification document explaining all the design features of the application. 

• Documented source code.  

• SQA plan.  

• Test plan. 

• Project plan details. 

• Object Model, showing classes and their relationships. 

• Interaction diagrams. 

 

3.4 Performance Requirements 

• To be able to calculate the physical properties at different simulation steps correctly 

for system of any size. 

• To achieve maximum speed-up and efficiency when executed on multiple processors. 

• To be able to perform time wise comparison between implementations using different 

synchronization mechanisms.  
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• Time taken to run the parallel program on a multi processor machine should be less 

than the time taken to run on a single processor machine. 

• To be able to read data from a file specified in certain format 

• To be able to handle the stability constraints on data 

• Handle perturbations in data 

• Minimize memory usage 

 

 

3.5 Hardware and Software Requirements 

• Application will be developed in Java, facilitating use of the application in any 

platform with JDK version 1.3 or above installed in it. 

• There are no special hardware requirements to use this application although a 

machine with processor speeds of more than 400 MHz is recommended for improved 

performance. 

 

3.6 Critical Requirements 

• The system should be free from deadlock i.e. where each thread waits on each other 

to make progress and thus no progress is made.  

• The system should be safe i.e. there should not be any miscalculations by interference 

of threads activities with each other. 

• The system should not violate simple assertions such as a thread gets the exact 

number of data items and their values from a buffer, which it is supposed to get. 
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It will be made sure that the above critical requirements are satisfied by the system by 

checking the synchronization model used here formally using Java Path Finder.  
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CHAPTER 3: PROJECT PLAN 
 
 

1. Introduction 

 The success of any project depends very much on how well a Project Plan is set 

up. We need to know what the standard milestones or events for the project will be and 

plan the project accordingly. The most successful approach in planning a project is the 

Iterative Planning Approach, where the software is developed on an iterative basis with 

specific cost and schedule guidelines. The key planning elements include the Work 

Breakdown Structure, Cost Estimation and the Architecture Elaboration Plan.  

 

2. Work Breakdown Structure 

 The Work Breakdown Structure displays and defines the tasks to be done in each 

iteration phase of the project life cycle.  It should clearly describe each task and the 

completion criteria for each task in the life cycle. All artifacts are identified in the work 

breakdown structure and the completion criteria are determined. The different phases and 

the important artifacts that are produced in each phase are listed below:  

 

2.1 Inception Phase 

 The Inception phase involves the development of a prototype that would establish 

the feasibility of the important or risky elements of the requirements and give users an 

idea about how the final product will look like. This phase also involves documentation 

that will be presented at the first presentation. These include a Vision document along 

with the requirements specification, Project plan and a Software Quality Assurance 

(SQA) Plan. The key requirements are finalized on the approval of the documents and the 
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executable prototype, by the committee after the first presentation. The changes that are 

recommended by the committee are identified as actions items for the next iteration. 

 

2.2 Elaboration Phase 

 The Elaboration phase involves the development of an architectural baseline for 

the software product, keeping in mind the action items identified during the inception 

phase. The design is drafted using the overall architecture developed in the inception 

phase. Critical Use cases are designed which are used to develop the second executable 

prototype that will be demonstrated during the second presentation. The conclusion of 

this phase depends upon the approval of the committee that the executable prototype 

demonstrates all critical use cases. Some of the critical use cases would be increasing the 

system size i.e. the total number of molecules, running the parallel program with number 

of threads equal to one and maximum number of threads that the program could handle 

before throwing an out of memory exception.  

 

2.3 Production Phase 

 The production phase involves coding the entire simulation system to satisfy all 

the requirements. Since the critical use cases are satisfied during the design phase, the 

production phase would involve building the remaining part of the system and integrating 

all the components so as to check their correctness.  
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2.4 Testing Phase 

 The testing phase involves testing the entire software system for correctness and 

performance. It is checked if all the critical use cases are satisfied. Unit testing and 

Integration Testing are performed during this phase. An error free software system marks 

the end of this phase. 

 

2.5 Documentation Phase 

 This phase involves developing several artifacts that will be submitted along with 

the final software at the end of the third presentation. The documents include all the 

artifacts developed in each phase and the User Manual. The User Manual will 

demonstrate to the user, how to use the software and contains help and trouble shooting 

sections. A test report will be developed that would describe how the tests were 

conducted and their results. An evaluation report will also be written in this phase which 

would give a brief evaluation of the entire project and lessons learned. The end of the 

phase will be marked by the approval of the final version of the software and the 

documentation, by the committee.  

 

3. Project Plan and Gantt chart 

 The following figure shows a snap shot of the project plan drafted in Microsoft 

Project and the accompanying Gantt chart. 
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Figure 3: Gantt chart 
 

 

4. Cost Estimation  

 In this project, Functional Point Analysis and COCOMO model [7] are used for 

estimating the size and cost of developing the application. 
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4.1 Functional Point Analysis 

 

4.1.1 Program Features 

• Outputs  

Each user output that provides application-oriented information to the user is counted. 

In this context output refers to reports, screens, error messages, and so on. Individual 

data items within a report are not counted separately. For this application, we have 

three outputs 1) output data written to screen 2) output data written to a file and 3) 

final coordinates written to a file. All the outputs can be classified as simple. 

  

• Inputs  

They are each unique user data or control input that enters the application boundary 

and also updates (adds to changes, or deleted from) a logical internal file, data set, 

table or independent data item. Each input is uniquely formatted or processed portion. 

For this application, we have two inputs 1) a data file and 2) a file in .pdb 

format which has the initial coordinates. All the inputs can be classified as simple. 

 

• Files  

Each major logical group of user data or control information related to application. 

They may be one part of a large database or a separate file. For this application, there 

are four simple files: 1) md.dat, the input file from which data for the system is read, 

2) init_positions, the input file from which the initial position coordinates of all the 

atoms in the system are read, 3) md.out, the output file to which the energies at every 
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given number of time steps is printed out, 4) final_positions, the output file to which 

the position coordinates of all the atoms of the system after the simulation are written. 

  

• External Interfaces  

All machine-readable interfaces (e.g. data files on tape or disk) that are used to 

transmit information to another system are counted.  There are no external interfaces 

for this system. 

  

• User Inquiries  

An inquiry is defined as an online input that results in the generation of some 

immediate software response in the form of an on-line output. Each distinct inquiry is 

counted. There are no user inquiries for this application. 

 

4.1.2 Weights for features 

  

  Simple Average Complex Total 
Outputs 4(3) 5 (0) 7(0) 12 
Inquiries 4(0) 5(0) 7 (0) 0 
Inputs 3(2) 4(0) 6(0) 6 
Files 7(4) 10 (0) 15(0) 28 
Interfaces 5(0) 7(0) 10(0)  0 
FPunadjusted       46 

Table 1: Weights for features 

 
The numbers in brackets represent the number of features for this particular application. 

They are multiplied by the weighting factor and added. 
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4.1.3 Influence Factors 

System Characteristic Influence level 

  Sequential Code Parallel Code 
Is the code designed to be 
reusable?  3 3 

Are conversion and 
installation included in the 
design? 

0 0 

Is the system designed for 
multiple installations in 
different organizations? 

4 4 

Is the application designed 
to facilitate change for ease 
of use by the user? 

3 3 

Does the system require 
online data entry? 0 0 

Does the online data entry 
require the input 
transactions to be built over 
multiple screens or 
operations? 

0 0 

Are the master files updated 
on-line? 0 0 

Are the inputs, outputs, files, 
or inquiries complex? 0 0 

Is the internal processing 
complex? 0 3 

Does the system require 
reliable backup and 
recovery? 

0 0 

Are data communications 
required? 0 3 

Are there distributed 
processing functions? 0 0 

Is performance critical? 3 3 
Will the system run in an 
existing, heavily utilized 
operational environment? 

0 0 

  
Total 

 
13 

 
19 

Table 2: Influence Factors 
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Legend: 

Level Influence 
0 No Influence 
1 Incidental 
2 Moderate 
3 Average 
4 Significant 
5 Essential 
Table 3: Legend 

 
Sequential Code:  

 

Process Complexity Adjustments = .65 + 0.01 * (sum of influence ratings) = .78 

FPadjusted = FPunadjusted * (.65 + 0.01 * (sum of ratings)) = 46 * (.65 + .01 * (13))   = 35.88 

Source lines of code (SLOC) = FP * Language Factor (for Java) = 35.88 * 40 = 1435.2 

 

Parallel Code: 

 

Process Complexity Adjustments = .65 + 0.01 * (sum of influence ratings) = .84 

FPadjusted = FPunadjusted * (.65 + 0.01 * (sum of ratings)) = 46 * (.65 + .01 * (19))   = 

38.64 

Source lines of code (SLOC) = FP * Language Factor (for Java) = 38.64 * 40 = 1545.6 

 

* Language Factor = Estimated source lines of code per function point. 
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4.2 Cost Estimation by COCOMO Model 

  Programmer Development Time  
TDEV Productivity (Month) 

Application Programs 
PM = 2.4*(KDSI) 
1.05 TDEV = 2.5* (PM) 0.38 

Utility Programs 
PM = 3.0*(KDSI) 
1.12 TDEV = 2.5*(PM) 0.35 

System Programs 
PM = 3.6*(KDSI) 
1.20 TDEV = 2.5*(PM) 0.32 

Table 4: COCOMO Model 

  

     The above table lists the equations to calculate the Person Months (a measure of 

programmer productivity) and the development time in months for a given KLOC/KDSI*   

for different types of Software Programs i.e. Application programs, Utility programs and 

System Programs. The current software project fits into the category of an application 

program.  

   Sequential Code:  

    Person Month: PM = 2.4 * (KLOC) 1.05   = 2.4 * 1.4 1.05  = 3.4 

    Development Time (Months):  TDEV = 2.5 * (PM) 0.38  = 2.5 * 3.4 0.38  = 3.9 

     

   Parallel Code:  

     Person Month: PM = 2.4 * (KLOC) 1.05   = 2.4 * 1.54 1.05  = 3.77 

      Development Time (Months):  TDEV = 2.5 * (PM) 0.38  = 2.5 * 3.770.38  = 4.2 

 

* KLOC – Kilo Lines of Code 

 * KDSI – Kilo Delivered Source Instructions (same as KLOC) 
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5. Architecture Elaboration Plan 

 The following activities have to be accomplished prior to the architecture 

presentation: 

 

• Action Items:  The action items identified during each of the phases, along with 

the efforts made to satisfy them, will be documented.  

• Updated Vision Document: The vision document will be updated to provide a 

complete and adequate representation of all the requirements. A set of “critical” 

requirements will be identified by ranking the requirements according to 

importance. These modifications will be based on the recommendations made by 

the members of the graduate committee.  

• Updated Project Plan:  The project plan will detail the phases, iterations, and 

milestones that will comprise the project.  Each deliverable will be included in the 

plan with estimated dates, sign-offs and evaluation criteria.  

o Cost Estimate:  The document will also provide an updated estimate on the 

size, cost and effort required for the project implementation.  

o Implementation Plan: The Implementation plan will define the activities 

and actions that must be accomplished during implementation. The plan 

will include a Work Breakdown Structure, complete with time and costs 

estimates and completion criteria.  
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• Formal Requirement specification: The properties of the system are formally 

expressed using Object Constraint Language (OCL). Use of a formal language to 

express the requirements will help making them adequate (it will adequately state 

the problem at hand), internally consistent (it will have a meaningful semantic 

interpretation that makes true all specified properties taken together), 

unambiguous (it may not have multiple interpretations of interest making it true), 

and minimal (it should not state properties that are irrelevant to the problem or 

that are only relevant to a solution for that problem).  

• Architecture Design:  The complete architectural design of the project is 

documented using modeling languages such as UML. Use case diagrams, Class 

diagrams and sequence diagrams will be used to illustrate the architecture design 

of the system. Re-use of pre-existing components will be documented.  

• Test Plan: A set of test cases, the types of tests that will be used for these test 

cases, the data that will be used for each test case and the requirement traces for 

each test case will be identified. The results of the test are documented.  

• Formal Technical Inspection:  One of the technical artifacts (design, formal 

requirement or executable prototype) will be subjected to a formal technical 

inspection by two independent MSE students – Srinivas Kolluri and 

Laxminarayan. An IEEE standard formal check list will be used by the inspectors. 

The inspectors will provide a report on their inspection results and these become a 

part of the project documentation.  
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• Executable Architecture Prototype:  An executable architecture prototype will be 

built in one or more iterations which will address all critical requirements 

identified in the vision document and expose the top technical risks.  
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CHAPTER 4: SOFTWARE QUALITY ASSURANCE PLAN 
 

1. Introduction 

This document explains the Software Quality Assurance Plan (SQAP) for MSE 

project of Lakshmikanth Ganti.  The project is to develop an application in Java that 

uses Molecular Dynamics Simulation techniques to simulate the interaction between 

the atoms in a group of  molecules. 

1.1 Purpose 

Software Quality Assurance Plan (SQAP) consists of those procedures, techniques 

and tools used to ensure that a product meets the requirements specified in software 

requirements specification. 

1.2 Scope 

The scope of this document is to outline all procedures, techniques and tools to be 

used for quality assurance of this project. 

This plan: 

• Identifies the SQA responsibilities of the project developer and the SQA 

consultant 

• Lists the activities, processes, and work products that the SQA consultant will 

review and audit 

• Identifies the SQA work products 
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1.3 Reference Documents 

• Lecture notes, CIS 748 Software Management, Dr. Scott Deloach, Spring 2002 

• Lecture Notes, CIS 771 Software Specifications, Dr. John Hatcliff, Spring 2001 

• Software Engineering, Roger S. Pressman, 5th Ed. 

• IEEE Guide for Software Quality Assurance Planning, IEEE STD 730.1 – 1995. 

• IEEE Standard for Software Quality Assurance Plans, IEE STD 730 – 1998. 

1.4 Overview of the Document 

The rest of the document is organized as follows: 

Management: A description of each major element of the organization and a 

description of the SQA tasks and their relationships 

Documentation: Identification of the documents related to development, verification, 

validation, use and maintenance of the software. 

SQAP Requirements: This section defines the SQA review, reporting, and auditing 

procedures used to ensure that software deliverables are developed in accordance with 

this plan and the project’s requirements. 

Training: This section describes the training program for the developer. 

 

2. Management 

2.1 Organization 

This tool is developed as an individual project as part of partial fulfillment of 

requirements for Masters in Software Engineering degree. Since there is only one 
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member involved, it will be the sole responsibility of the developer to review the 

product’s usability, efficiency, reliability, and accuracy. The major professor will 

however conduct inspections, reviews, and walk-through on a regular basis. In 

addition a committee consisting of the major professor and two other faculty members 

will review the documents of each phase before every presentation. Major Professor's 

and the committee’s specifications and suggestions will be used in places where 

quality decisions need to out-weigh development schedule decisions. 

2.2 Roles 

• The committee consists of Dr. Virgil Wallentine, Dr. Paul Smith and Dr.Mitch 

Neilsen. 

• Major Professor: Dr. Virgil Wallentine 

• Developer: Lakshmikanth Ganti. 

2.3 Tasks and Responsibilities 

The responsibilities of the developer are as follows: 

• Develop the requirement specification and cost estimation for the project 

• Develop the design plan and test plan for testing the tool 

• Implement and test the application and deliver the application along with the 

necessary documentation 

• Give a formal presentation to the committee on completion of the analysis, design 

and testing phases. The committee reviews the developer’s work and provides 

feedback/suggestions. 
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• Planning, coordinating, testing and assessing all aspects of quality issues. 

The responsibilities of the committee members are to: 

• Review the work performed by the developer 

• Provide feedback and advice 

2.4 SQA Implementation in different phases 

Quality assurance will be implemented through all the software life cycles of the 

tool’s development process, until the release of the software product. The following 

are the quality assurance tasks for each phase of the software development:   

Requirements phase:  When the SRS is being developed, the developer has to ensure 

that it elucidates the proposed functionality of the product and to keep refining the 

SRS until the requirements are clearly stated and understood.  

Specification and Design phase: Due to the great importance for accuracy and 

completeness in these documents, weekly reviews shall be conducted between the 

developer and the professor to identify any defects and rectify them. 

Implementation phase: The developer shall do code reviews when the construction 

phase of the Tool begins. 

Software testing phase: The developer shall test each case. The final product shall be 

verified with the functionality of the software as specified in the Software 

Requirements Specification (SRS) for the Tool.   

Through all these phases of the software development, the following shall also be 

conducted to improve the software quality: 

• Develop and generate SQAP: Generate a finalized SQAP plan 
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• Communication and Feedback: The developer is encouraged to freely express 

disagreements, suggestions and opinions about all aspects of the weekly process 

of software development. 

• Internal audits and evaluations: The Major professor and the committee are 

expected to do auditions and evaluations at the end of each phase in the project. 

3. Documentation 

In addition to this document, the essential documentation will include: 

1) The Software Requirements Specification (SRS), which  

• Prescribes each of the essential requirements (functions, performances, design 

constraints and attributes) of the software and external interfaces 

• Objectively verifies achievement of each requirement by a prescribed method 

(e.g. Inspection, analysis, demonstration or test) 

• Facilitates traceability of requirements specification to product delivery. 

• Gives estimates of the cost/effort for developing the product including a project 

plan. 

 

2) The Formal Specification Document, which gives the formal description of the 

product design specified in Object Constraint Language (OCL). 

 

The Software Design Description (SDD) 

• Depicts how the software will be structured 
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• Describes the components and sub-components of the software design, 

including various packages and frameworks, if any. 

• Gives an object model that is developed using Rational Rose highlighting the 

essential classes that would make up the product. 

• Gives a sample interaction diagram, showing the key interactions in the 

application. This should also be a part of the object model. 

 

3) Software Test Plan: Describes the test cases that will be employed to test the 

product.  

 

4) Software User Manual (SUM) 

• Identify the required data and control inputs, input sequences, options, program 

limitations or other actions. 

• Identify all error messages and describe the associated corrective actions. 

• Describe a method for reporting user-identified errors. 

• Documented Source Code. 

 

The following documents will be provided at the end of each phase by the developer: 

Phase 1: Objectives 

• Project Overview 

• Requirements Specification 
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• Cost analysis 

• Project plan 

• Software quality assurance plan 

Phase 2: Architecture 

• Implementation Plan 

• Formal Requirement Specification 

• Architecture design 

• Test plan 

Phase 3: Implementation 

• User Manual 

• Assessment Evaluation 

• Project Evaluation 

• References 

• Formal Technical Inspection Letters 

Appendix 

• Source code 

4. SQA Program Requirements 

4.1 Standards 

• Document standards – MSE Portfolio 
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• Coding standards – Java 1.4 

• Coding Documents standards – Java Documentation 

• Test Standards – IEEE Standard for software test documentation 

4.1. Metrics 

• LOC  - lines of code is used to measure the size of the software 

4.2. Software Documentation Audit 

Quality Assurance for this project will include at least one review of all current work 

products in each stage of development (Requirement, Design, and Implementation). 

The reviews will assure that the established project processes and procedures are 

being followed effectively, and exposures and risks to the current project plan are 

identified and addressed.  The review process includes: 

• A formal presentation at the end of each development phase (Requirement, 

Design and Implementation). All current work products are presented to the 

committee members for review. 

• A managerial review by the advisor periodically to ensure the work generated is 

in compliance with project requirements. 

• Reviews by the committee after each presentation. 

4.3. Requirements Traceability 

The SRS will be used to check off the deliverables. The Project Review will ensure 

that each of the requirements mentioned in the SRS is met by the deliverables. 
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4.4. Software Development Process 

The software development process involves three stages: 1) Requirements phase, 2) 

Design phase (this phase also involves the development of the product prototype and 

3) Implementation and testing phase. During each phase, the Major Professor and the 

committee will review the deliverable documents. The developer would incorporate 

modifications suggested by the committee. This would ensure quality of the software 

product.  

4.5. Project Reviews 

The Committee will perform a review at the 3 stages of the project as described in 

the section above. This review will determine whether the requirements have been met 

for the deliverable, check that the product meets the requirements, ensure that the 

SQA plan has been adhered to, verify the performance of the software and ensure that 

acceptance testing is carried out. In addition the developer will conduct a Formal 

Technical Review after the design phase. A design checklist will be used and the 

developer will check to see whether his/her design meets the checklist criteria.  

4.6. Testing and Quality Check 

Testing will be carried out in accordance with the Software Testing Plan (STP). 

Testing documentation will be sufficient to demonstrate that testing objectives and 

software requirements have been met. Test results will be documented and discussed 

in the final phase of the project. 
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5. Training 

The following courses taken by the developer at Kansas State University and 

Research experience under the guidance of Dr. Virgil Wallentine and Dr. Paul Smith 

will provide the required training. 

• CIS 540: Software Engineering –1 

• CIS 740: Software Engineering – 2 

• CIS 748: Software Management 

• CIS 771: Software Specification 

• CIS 625: Parallel Programming 
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CHAPTER 5: ARCHITECTURE DESIGN 
 

 
1. Introduction 

 The purpose of this document is to describe the architecture design of the 

Molecular Dynamics Simulation tool that will capture the requirements as outlined in the 

requirements specification section. The document will outline the goals, key design 

principles along with class diagram and sequence diagrams.  

 

2. References 

 IEEE STD 1016-1998, “IEEE Recommended practice for Software Design 

Description”. 

 

3. Definitions and Abbreviations 

• SDD: Software Design Description 

• Molecular Dynamics Simulation: A technique where the time evolution of a set of 

atoms is followed by integrating their equations of motion. 

• Lennard-jones potential: An interaction potential existing between atoms that are 

considered here. 

• PDB: Protein Data Bank 

• Potential Energy: The energy resulting from position or configuration of an atom. 

• Kinetic Energy: The energy resulting from motion of an atom. 

• Temperature: A measure of the kinetic energy in atoms of a substance.  
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• Cut-off distance: Distance between atoms above which there are no interaction 

forces. 

 

4. Goals 

 The overall goal of the system is to calculate the final coordinates of all the atoms, 

the energies and the temperature of the system after simulating through a certain number 

of time steps. This depends on doing the following tasks correctly at each time step: 1) 

Calculate the force on an atom due to every other atom within the interaction distance 2) 

Use the force calculated above to calculate the increment in velocity and displacement of 

the atom.3) Calculate the potential energy contributed by each atom in the system.4) 

Calculate the total Kinetic energy of the system and the temperature of the system using 

the kinetic energy.  

 

5. Key Design Principles 

 

5.1 Algorithm  

 The algorithm used here is called the Particle-Particle (PP) method. Here, the state 

of the physical system at some time t is described by the set of atom positions and 

velocities {Xi (t), Vi (t); i = 1, Np}. The time step loop updates these values using the 

forces of interaction and equations of motion to obtain the state of the system at a slightly 

later time t + DT as follows: 
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1. Compute forces.  

Clear potential and force accumulators 

 

V := 0 

for  i = 1 to Np do 

 Fi: = 0 

Accumulate forces 

for  i = 1 to Np – 1  do 

for  j = i + 1 to Np do 

  Find force Fij of particle j on particle i 

       Fi: = Fi + Fij

       Fj: = Fj - Fij

  Find the potential energy contribution  

 V  = V + Vij

2. Integrate equations of motion  

for  i = 1 to Np do 

 Velinew: = Veliold + (Fi/mi)DT 

 Xinew: = Xiold + VeliDT  

3. Update time counter  

t: = t + DT  

 Repeated application of the time step loop is used to follow the temporal evolution of the 

system. 
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The equations for calculating Fij and Vij are called the Lennard-Jones equations for 

calculating potential and force and are given as follows:  

 

 

 and  are the specific Lennard--Jones parameters, different for different 

interacting atoms. r is the distance between the interacting atoms. The values of these 

parameters for the system under consideration are: σ = 0.3 nanometers and ε  = 1.0 

KJ/mole. The Lennard--Jones force between two atoms is given by the equation:  

 

5.2 Design 

 Performance is a key issue in computationally intensive systems such as the one 

being programmed here. The majority of the computation in the code occurs in the 

calculation of force on each atom due to every other atom. The fact that there will be no 

interacting forces between atoms whose separation is greater than a specific cut-off 

distance is taken into consideration and the following model is designed for calculating 

forces, which improves performance. 

 

Each of the atoms is assigned to cubical partitions whose length is equal to the cut-off 

distance for interaction, depending on their spatial configuration (x, y, and z coordinates).   
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The ideal number of partitions in the current system would be 8x8x8, since the length of 

the simulation box is 8.09202 nm and the cut-off distance is 1.0 nm, and the length of 

each partition would be 1.0115025 nm. Each partition is uniquely identified by three 

indices. For example if each partition is of length 1, then the partition which is identified 

by partition (0,0,0) holds the atoms whose coordinates are such that 0<=x<1, 0<=y and 

0<=z<1. The following diagram shows how the whole system of atoms is assigned to 

partitions. The partitions are connected like a torus interconnection system to 

accommodate the periodic boundary conditions property of the simulation system. So, 

partition (0,2,0) is the left neighbor of partition (0,0,0). Similarly partition (2,0,0) is the 

top neighbor of partition (0,0,0). The direction of the positive z-axis is into the paper.                                
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Figure 4: Partitions of the system 

The efficiency in this model is due to the fact that now we need to consider the 

interactions only between atoms in the neighboring partitions instead of calculating the 

distance between each pair of atoms and checking if it is less than the interaction 

distance.  So the above algorithm for calculating force and potential energy is slightly 

modified to accommodate for this model and is as follows: 
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Initialize forces and potential energy  

for partition1  = 1 to n 

    for partition2   = 1 to n 

      { 

          check if the partitions are neighbors 

 { 

      for i  = 1 to number of atoms in the partition1 

        {  

                       initialize force accumulators: sfx  = 0, sfy = 0, sfz = 0 

  for j  = 1 to number of atoms in the partition2 

    {  

        check if atom number in partition1 > atom number in partition2  

          {    

   check if distance between the atoms < cut-off distance 

     { 

                                           pot = pot  + vlj; 

          fxj  = fxj + fx; fyj  = fyj + fy; fzj = fzj + fz; 

          sfx = sfx + fjx; sfy = sfy + fjy; sfz = sfz + fjz; 

     } 

          } 

                           } 

             fxi = fxi – sfx; fyi = fyi – sfy; fzi = fzi = fzi – sfz; 

 }   

       } 

 

fx, fy and fz are the interaction force between two atoms in x, y and z directions  and vlj 

is the interaction potential between two atoms calculated according to the Lennard-Jones 

equation ( eqns 1 & 2).  The symmetry of the forces of two bodies on each other is 
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exploited here by examining each pair of bodies just once (note the check “check if atom 

number in partition1 > atom number in partition2”).  

 

5.3 Design considerations for a parallel program 

 The current project is an ideal application of parallel programming owing to the 

intense computational nature of the molecular dynamics simulations. Parallelizing the 

program and running it on multiple processors significantly reduces the time taken for the 

simulation, since the work is shared by multiple threads each running on different 

processors.   

The simplest design of a parallel program from the above sequential code would 

be to distribute the partitions equally between all the threads.  At the end of iteration, 

each thread has to communicate with its neighboring threads by passing all its bordering 

partitions which will be required by its neighboring threads to run the simulation of its 

own partitions. Various designs for a parallel program based on 1) Synchronization 

mechanism, 2) the pattern of thread creation and 3) Granularity, are explained below: 

5.3.1 Design based on Synchronization Mechanism 

Synchronization between threads is a very important issue to be considered 

carefully here. It has to be ensured that each of the threads is in sync with the other 

threads for the computation to be accurate. Two possible mechanisms where 
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synchronization can be achieved are by 1) message passing between threads and 2) using 

a barrier to stop all the threads, at the point where synchronization is required.  

a) Message Passing 

The message passing between the threads is carried out using Bounded Buffers. 

Each bounded buffer is represented by an object of the Java class “Objbuf” which is 

described in detail later in the class diagram section of this document. Two unique 

bounded buffers exist between each pair of neighboring threads: one to put the objects to 

be transferred and one to get them.  The threads with which a thread communicates 

directly are referred to as neighboring threads. The number of neighboring threads and 

the mechanism of message passing depend on the pattern of thread creation, which is 

explained in detail in the next section. Message passing is used only when the 

neighboring threads need to synchronize with each other. 

b) Barrier Synchronization 

A Java class called “Barrier” is created which is used for synchronizing all the 

threads at a given point. A common Barrier is shared between all the threads. Whenever 

all the threads need to stop at a point and synchronize, each of the threads calls the gate () 

method in this class.  This is used only when all the threads in the system need to stop 

and synchronize. The Barrier class provides synchronization through the use of the 

Semaphore Classes (Binary and Counting Semaphores).  
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5.3.2 Design based on pattern on thread creation 

The pattern in which the threads are arranged has no effect on the barrier 

synchronization mechanism since when a barrier is used we intend that all the threads be 

stopped irrespective of how they are arranged. However, it affects the message passing 

mechanism since the number of neighbors for a thread and who they are is changed based 

on the pattern in which they are arranged. Two possible patterns are 1) 3-D grid shaped – 

where each thread communicates with its twenty six neighbors and 2) Vertical pipeline – 

where every thread communicates only with its upper and lower neighbors. The system 

requires that the connections are based on torus inter-connection system i.e. in the case of 

Vertical pipeline, the lower neighbor of the bottom most thread is the top most thread and 

vice versa.  The following sub-sections describe the creation of threads and message 

passing between them for each pattern: 

a) 3-D Grid shaped 

  A three dimensional array of threads is created with each thread uniquely 

represented by three indices. Since there are 8x8x8 partitions, it would be only possible to 

create an array of 2x2x2 or 4x4x4 threads with 4x4x4 or 2x2x2 partitions assigned to 

each thread.  Creating 8x8x8 threads and assigning one partition per thread will cause an 

excessive overhead in thread creation which increases the execution time enormously. 

Since there is a 3D grid of threads, each thread has to communicate with its twenty-six 

neighboring threads. So each thread should have twenty-six buffers associated with it. 

Each thread has access to a static four-dimensional array of bounded buffers. It has the 

dimensions [M][M][M][26]. The first three dimensions are the same as the thread 
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identifiers. The fourth dimension determines the other thread, which it is associated to i.e. 

top or left etc. The following mapping helps to determine the neighboring thread’s 

coordinates with relative to the coordinates of the current thread and the value of the 

fourth dimension of the corresponding bounded buffer.  The naming convention is T: 

Top, B: Bottom, L: Left, R: Right, O: Outer, I: Inner. So the neighboring threads are 

these and their combinations. E.g. TRO represents the Top-Right-Outer thread. 

 

Neighboring 
thread.  

X coordinate Y coordinate Z coordinate Fourth  

dimension 

T -1 same same 0 

B +1 same same 1 

L Same -1 same 2 

R Same +1 same 3 

O Same same -1 4 

I Same same +1 5 

TL -1 -1 same 6 

TR -1 +1 same 7 

TO -1 same -1 8 

TI -1 same +1 9 

BL +1 -1 same 10 

BR +1 +1 same 11 

BO +1 same -1 12 

BI +1 same +1 13 

LO Same -1 -1 14 

LI same -1 +1 15 

RO same +1 -1 16 

RI same +1 +1 17 

TRO -1 +1 -1 18 
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TRI -1 +1 -1 19 

TLO -1 -1 -1 20 

TLI -1 -1 +1 21 

BRO +1 +1 -1 22 

BRI +1 +1 +1 23 

BLO +1 -1 -1 24 

BLI +1 -1 +1 25 

Table 5 : Bounded Buffer Coordinates in 3D Grid System 

Each thread has an array of buffers of size 26 called “buf []” to get the bordering 

partitions of the neighboring threads and an array of buffers called “shad []” to put its 

bordering partitions into them so that the corresponding thread will fetch them.  These 

buffers and shadows should be properly defined so that the buffer of a thread is the same 

as the shadow of one of the neighboring threads. For e.g. the top shadow of a thread 

should be the bottom buffer of the thread’s top neighbor.  It is also important that the 

correct partitions are transferred to the corresponding neighbors. For e.g. the top layer of 

the partitions array is to be transferred to the top neighbor.  

b) Vertical Pipeline 

 A one dimensional array of threads is created with each thread identified by a 

unique index. The idea here is to assign layers of partitions to each thread rather than a 3-

D array of partitions to each thread.  Since there are 8 layers of partitions with 8x8 

partitions in each layer, the number of threads could be 1,2 4, or 8 with 8,4,2,1 layers 

assigned to each thread respectively. In this pattern, each thread has only two neighbors 

associated with it. So each thread should have two buffers associated with it. Each thread 

has access to a static two-dimensional array of bounded buffers. It has the dimensions 
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[M][2]. The first dimension is the same as the thread identifier and the second dimension 

determines the other thread, which it is associated to i.e. top or bottom. The following 

mapping helps to determine the neighboring thread’s coordinate relative to the coordinate 

of the current thread and the value of the second dimension of the corresponding bounded 

buffer.  The naming convention is T: Top, B: Bottom. 

Neighboring 
thread.  

First Dimension Second 
Dimension 

T -1 0 

B +1 1 

Table 6: Bounded Buffer Coordinates in Vertical Pipeline system 

Each thread has an array of buffers of size 2 called “buf []” to get the bordering partitions 

of the neighboring threads and an array of buffers called “shad []” to put its bordering 

partitions into them so that the corresponding thread will fetch them.  These buffers and 

shadows should be properly defined so that the buffer of a thread is the same as the 

shadow of one of the neighboring threads. For e.g. the top shadow of a thread should be 

the bottom buffer of the thread’s top neighbor.  It is also important that the correct layer 

of partitions is transferred to the corresponding neighbors. For e.g. the top layer of the 

partitions array is to be transferred to the top neighbor.  

5.3.3 Design based on Granularity 

 Granularity is determined by the frequency of thread synchronization or 

communication relative to the amount of computation done.  It is expected that the more 

the computation per thread relative to the communication, the more speed up is achieved 

by the parallel program since the over head in communication is reduced. Granularity is 
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increased or decreased by altering the number of partitions assigned to a thread. For a 

system of fixed size, the more the number of threads, the less the granularity is. 

Granularity can also be increased by increasing the system size with a fixed number of 

threads. Measurements of the speed up with different levels of granularity will be 

performed. 

The pseudo code for the run method of a thread i.e. what each thread will do in parallel is 

as follows: 

For time step  = 1 to number of iterations  

{ 

     1) assign the atoms to the partitions  that belong to this thread depending on their                  

spatial configuration 

     2) put the bordering partitions  in  the  corresponding shadows. 

     3) collect the bordering partitions of the neighbors from all the buffers. 

     4) calculate forces.  

     5) increment velocities and calculate displacements. 

     6) Calculate energies due to the contribution of atoms in this thread’s partitions and  

send them to energy writer class. 

} 

6. Class Diagram 

 The following figure represents the class diagram for the Simulation program and 

the subsequent sections explain in detail the purpose of each class in the class diagram: 
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Figure 5: Class Diagram 

6.1 Class Atom  

 An object of this class represents each atom in the simulation system. It has the 

forces, velocities, and coordinates in all directions as its attributes and has get and set 

methods for each of these attributes.  

6.2 Class IO_Utils 

 This is a helper class, which has methods for formatting an integer or a double to 

be outputted to a file in a specified pattern.  

 

6.3 Class LineReader 

 

 This is a helper class which has methods that browse through a file and reads it 

line by line for a string, double or integer input. 

 

6.4 Class ObjBuf 

 

 This is the class, which provides the communication between the threads. Each 

object of this class represents a buffer where threads can put or get an array of objects. As 

already seen before in this document, there’s a unique pair of get and set buffers between 

each pair of threads.  It has synchronized methods for putting and getting an array of 

objects. Thus, at most one thread can be inside these methods at a time. Synchronization 

is provided by means of a Boolean variable that is initially set to false. There’s a check on 
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this variable in each of the methods. So, a thread waits in the get() method if the buffer is 

empty and likewise waits in the put() method if the buffer is full.  

 

6.5 Class EnergyWriter 

 

 Since the energy calculations are distributed over multiple threads and non-

neighboring threads could be at different time steps at a time, we need a class that 

collects the energy contributions from each thread at a particular time step and adds them 

together to get the totals. This is the class that does this work. It has methods for a) 

collecting the potential and kinetic energies form the threads at each time step b) 

calculating the averages and fluctuations for each of the physical quantities at each time 

step i.e. potential energy, kinetic energy, total energy and temperature c) printing the 

energies and temperature at every specified number of time steps to a file in a specified 

format. 

 

6.6 Class ParThread 

 

 This is a Java Thread class and has methods to do the following tasks which are 

called in the standard run() method.  

 

• Assign atoms to the partitions belonging to itself based on the atom’s coordinates  

• Put the bordering partitions of  this thread in all of the neighboring shadows  

• Get the bordering partitions of all the neighbors from buffers  
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• Calculate forces on the atoms of the partitions belonging to this thread due to 

every other atom with in the interaction distance.  

• Increment the velocities and displace the atoms of the partitions belonging to this 

thread.  

• Pass the kinetic energy and potential energy contribution due to the atoms of the 

partitions belonging to this thread, to the EnergyWriter class at each time step.  

 

6.7 Class MdPar  

 

 This is the main class, which is responsible for starting the simulation. It creates 

an array of threads, joins them and records the time taken for the entire simulation.  This 

class is also responsible for 1) initializing the coordinates and velocities of the Atoms 

with the data read from the velocity and coordinate input files, 2) initializing the values of 

the physical constants required in the simulation with the data read from the md.dat input 

file and 3) write the final positions of the Atoms after simulation to the coordinates 

output file. 

 

6.8 Class MdConstants 

  

 This is the class which holds all the constant values such as eps, the Lennard-

Jones parameter, and is used by most of the classes. 
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6.9 Class Barrier 

  

 This class is used for synchronizing all the threads at a given point. A common 

Barrier is shared between all the threads. Whenever all the threads need to stop at a point 

and synchronize, each of the threads calls the gate () method in this class.  This is used 

only when all the threads in the system need to stop and synchronize. If we need only the 

neighboring threads to stop and synchronize, the ObjBuf class serves the purpose in 

addition to communicating objects between the threads. In our system it is observed that 

the atoms did not move more than twice the length of the partition during a simulation 

with 100 iterations. That means a thread needs to wait only for the neighboring threads 

and synchronize. So an ObjBuf could be used instead of a Barrier.  The Barrier class 

provides synchronization through the use of the Semaphore Classes (Binary and 

Counting Semaphores). 

 

7. Use Cases  

 

 The primary use cases in the system are listed below and explained with the help 

of sequence diagrams.  

 

7.1 Read Data from input files  

 The readString method of the LineReader class is used to browse the files line by 

line to get the input as a string. These strings are then parsed appropriately to extract the 
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desired data e.g. velocities or coordinates in double format and other data values in 

integer format.  

 

 

Figure 6: Sequence Diagram, Read Data From Input Files 

7.2 The sequence diagram below illustrates the following use cases, which involve 

method calls in the same class itself.  

 

• Assigning atoms to a partitions of a thread depending on their spatial coordinates 

• Put bordering partitions in all the thread’s shadows for its neighboring threads to 

collect. 

• Get bordering partitions from all the neighboring threads. 

• Calculate forces on atoms in the partitions of the current thread 

• Increment velocities and displace the atoms of the partitions of the current thread 
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ParThreadParThread

1: assign

2: putPartitions

3: getPartitions

4: force

5: incrementVel

6: displace

 

Figure 7: Sequence Diagram 

 
7.3 Calculate and print energies 

 The threads communicate with the EnergyWriter class to put the kinetic and 

potential energy contributions of the threads atoms at each iteration step by calling the 

putEnergies() method.  This method checks at each step if all the threads have 

communicated their energy contributions and makes a call to the calculateTotals() 
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method  which calculates the total energy contributed by all the threads and calls the 

printEnergies() method which prints the energies to the console and a file at every given 

number of steps.  

 

 

ParThreadParThread EnergyWriterEnergyWriter

1: putEnergies

2: calculateTotals

3: printEnergies

 

Figure 8: Sequence Diagram, Calculate and Print Energies 

 
7.4 Calculate averages and fluctuations of energies and temperature and write them to a 

file.  

 The main class (MdPar) calls the calculateAvgsAndFlucs() method of the 

EnergyWriter class, which calculates the averages and fluctuations of the potential 

energy, kinetic energy and the temperature and calls the printEnergies() method to output 

them to the console and a file. 
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MdParMdPar EnergyWriterEnergyWriter

1: calculateAvgsAndFlucs

2: printEnergies

 

Figure 9: Sequence Diagram, Calculate Averages and Fluctuations 
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CHAPTER 6: FORMAL REQUIREMENTS SPECIFICATION 
 

 
1. Introduction 

 The purpose of this document is to present the process of formal specification and 

verification of the synchronization technique used in this project. Java Path Finder (JPF) 

has been used to formally specify and verify the synchronization properties of the system. 

 

2. Java Path Finder 

 The Java Path Finder [8] is a translator from a subset of Java 1.0 to PROMELA, 

the programming language of the SPIN model checker. This tool is designed to establish 

a framework for verification and debugging of Java programs based on model checking. 

It simplifies the verification of Java programs by obviating the need to manually 

reformatting the program into a different notation (e.g. PROMELA or OCL), in order to 

analyze the program. This system is especially suited for analyzing multi-threaded Java 

applications, of which the current project is an example. The system can find deadlocks 

and violations of Boolean assertions stated by the programmer in a special assertion 

language.  

 

3. Model 

 Synchronous communication between the threads is carried out using Bounded 

Buffers. Two unique bounded buffers exist between each neighboring pair of threads, one 

to put the objects to be transferred and one to get them. Each thread is modeled as a 

Producer-Consumer i.e. it is a producer as well as a consumer at the same time. Since the 

simulation is modeled using a three dimensional grid of threads, each thread has twenty 
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six neighbors and a buffer associated with it. The model with communication between all 

the twenty six threads has an enormously huge state space and very intensive in terms of 

time and resources.  So the following prototype is proposed for the communication and 

has been specified using JPF: 

 

 

Figure 10: JPF Model 
 

4. JPF Specification 

 The Java code for the verification of the synchronization technique used in the 

project can be found in Appendix A. JPF checks for deadlocks, assertion violations and 

uncaught exceptions. The Assertion made here is that none of the neighboring threads are 

more than one step ahead or one step behind than the simulation step of a given thread. In 

other words, this means that the computations for step t+1 of a thread are dependent on 

the step t of all of its neighbors and thus ensure that the threads are never out of 

synchronization. 

 

     PC1 

     PC3 

     PC2 

  Buffer 4 

  Buffer 3 

  Buffer 2   Buffer 1  

  get   put 

  get 
  get 

 put   put 

  put   get 

 64



 

5. JPF Result 

 The above model is verified by JPF for its safety properties and assertion 

violations in all the possible states that can be reached. The following is the result by JPF: 

 
=================================== 
  No Errors Found 
=================================== 
 
----------------------------------- 
States visited       : 8,970,992 
Transitions executed : 27,423,628 
Instructions executed: 864,227,005 
Maximum stack depth  : 720 
Intermediate steps   : 1,181,428 
Memory used          : 1.1GB 
Memory used after gc : 1.05GB 
Storage memory       : 59.43MB 
Collected objects    : 27,051,899 
Mark and sweep runs  : 25,795,428 
Execution time       : 3:06:53.591s 
Speed                : 2,445tr/s 
----------------------------------- 
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CHAPTER 7: TEST PLAN 
 

 
1. Test Plan Identifier 

 MSE – TP 01 

 

2. Introduction 

 The purpose of this document is to outline the plan for testing all the critical use 

cases and functionality of the Molecular Dynamics Simulation tool. The document will 

also describe the tools and environment used to test the software.  

 

3. References 

 The following documents are used for reference: 

• Software Requirements Specification 

• Architecture Design 

 

4. Test Items 

 The following features are to be tested: 

• Read Data from files 

• Read Program Arguments 

• Formatting values for output. 
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5. Features not to be tested 

 The communication between the threads is not to be tested again, since we 

already validated the code for communication using Java Path Finder and ensured that it 

is free from deadlocks and uncaught exceptions. 

 

6. Approach 

 The specific requirements specification is used as a guide to test the above-

mentioned features of the software. 

 

6.1 Read Data from files.  

 The software should read data from the files in a specific format i.e. integer, string 

or a double. Exceptions should be raised appropriately whenever a wrong format or a 

blank line is encountered. 

 

6.2 Read Program Arguments: 

 The program should catch exceptions in the program arguments and throw an 

appropriate error message. For e.g., the program has an argument, the number of threads, 

which can be only 1,2,4 or 8. 

 

6.3 Formatting values for output 

 The methods used for formatting the values for output should be tested for 

correctness. They should properly format the values raising exceptions for invalid inputs.  
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6.4 Functional Testing 

The program is tested for correctness i.e. it should give the same results when run 

on any number of threads.  

 

6.5 Performance Requirements Testing 

 All performance requirements will be tested against their requirements described 

in the software requirements specification document.  

 

7. Item/Pass Fail Criteria 

 The software should be able to pass all the tests for all the features and 

performance requirements as described in the Software requirements Specification 

document. Each feature will be considered passed if it satisfies the corresponding 

requirement and failed if the expected behavior is not met or if any exceptions are raised.  

 

 

8. Suspension Criteria and Resumption Requirements 

  

8.1 Suspension Criteria 

 If any of the above features are tested and the test fail or are not satisfactory, 

testing will be suspended till the bug is traced or corrected. While testing new versions of 

the software, testing will be suspended if any of the features of the previous release fails 

the test.  
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8.2 Resumption Requirements 

 Testing will be resumed when all the functions listed above work adequately and 

correctly. When testing for new releases, testing will resume when all the features of the 

previous release are considered passed.  

 

9. Test Deliverables 

 The following artifacts are produced after tests are conducted on the simulation 

software. 

• Test Plan 

• Test cases and results 

 

10. Environment 

 All the tests will be conducted on sunflower.cis.ksu.edu and blackeye.cis.ksu.edu 

which are UNIX machines with Java -1.3 installed on it.   
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CHAPTER 8: COMPONENT DESIGN 
 

 
1. Introduction:  

 The purpose of this document is to outline the design of all the components 

(classes) of the software and the interaction between them necessary to achieve the 

desired results.  The objective of the project is to develop a parallel program for the 

Molecular Dynamics simulation of a group of atoms acted upon by an interaction force 

called the Lennard-Jones force of interaction. The following sections explain in detail all 

the classes and their functions .The Object Model is used as a reference to explain the 

functionality of each class. 

 

2. class Atom: 

 

Atom
force_x : double
force_y : double
force_z : double
vel_x : double
vel_y : double
vel_z : double
x_pos : double
y_pos : double
z_pos : double

Atom()
get_forces() : double[]
get_positions() : double[]
get_velocities() : double[]
set_forces(x : double, y : double, z : double)
set_velocities(x : double, y : double, z : double)
set_positions(x : double, y : double, z : double)

 

Figure 11: Class Atom 
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An instance of this class represents an atom in the system. It holds the values of the 

forces, velocities and coordinates in all the directions. The methods of this Atom class are 

used to set or get the velocities, forces or coordinates of an atom at any instant of time. 

The detailed description of the methods of this class is as follows: 

set_positions 
public void set_positions(double x, 
                          double y, 
                          double z) 

Sets the coordinates in x, y and z directions  
Parameters: 
x - - The x coordinate 
y - - The y coordinate 
z - - The z coordinate 

 

set_velocities 
public void set_velocities(double x, 
                           double y, 
                           double z) 

Sets the velocities in x, y and z directions  
Parameters: 
x - - The velocity in x direction 
y - - The velocity in y direction 
z - - The velocity in z direction 

 

set_forces 
public void set_forces(double x, 
                       double y, 
                       double z) 

Sets the forces in x, y and z directions  
Parameters: 
x - - The force in x direction 
y - - The force in y direction 
z - - The force in z direction 

 

get_positions 
public double[] get_positions() 

Gets the coordinates in x, y and z directions  
Returns: 
positions - the x, y and z coordinates packed in an array 
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get_velocities 
public double[] get_velocities() 

Gets the velocities in x, y and z directions  
Returns: 
velocities - the x, y and z velocities packed in an array 

 

get_forces 
public double[] get_forces() 

Gets the forces in x, y and z directions  
Returns: 
forces - the x, y and z forces packed in an array 

 

 

3. class Barrier 

 

Figure 12: Class Barrier 

 

This class is mainly used for synchronization purposes. A common barrier is shared 

between all the threads.  This is used only when it is required that all the threads stop. If 

not, the ObjBuf class is used for synchronization between the neighboring threads. 

Whenever all the threads need to stop at a point and synchronize, each of the threads calls 

the gate() method in this class. The gate method releases the threads once all the threads 

arrive. The detailed description of the methods of this class is as follows: 
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join 
public void join() 

Joins the Barrier thread  
 

gate 
public void gate(int i) 

Stops the thread  
Parameters: 
i - - thread identifier 

 

run 
public void run() 

This is the method that is started when the current thread is instantiated  
Specified by: 
run in interface java.lang.Runnable 

 

4. class BinarySemaphore 

BinarySemaphore

BinarySemaphore()
BinarySemaphore(initial : int)
BinarySemaphore(initial : boolean)
V()

 

Figure 13: Class BinarySemaphore 

This class extends the Semaphore Class and is an implementation of the Binary 

Semaphore i.e. this semaphore can have only two values. 

 

5. class CountingSemaphore 

CountingSemaphore

CountingSemaphore()
CountingSemaphore(initial : int)

 

Figure 14: Class CountingSemaphore 
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This class extends the Semaphore Class and is an implementation of the Counting 

Semaphore which can have any number of values. 

 

6. class EnergyWriter 

 

Figure 15: Class EnergyWriter 

 

This class is responsible for collecting the individual contributions of energies from all 

threads at each iteration step, calculate the total energies, averages, fluctuations and 

temperatures, and display them to the console as well as write to a file after every given 

number of steps. The detailed description of the methods of this class is as follows: 

putEnergies 
public void putEnergies(double pot_energy, 
                        double kin_energy, 
                        int id, 
                        int num_iter) 
                 throws java.lang.Exception 

Collects the energy contributions from the individual threads  
Parameters: 
pot_energy - - potential energy contribution of a thread 
kin_energy - - kinetic energy contribution of a thread 
id - - thread index 
num_iter - - the current iteration step of the thread  
Throws:  
java.lang.Exception 

 

 74



putAtomCount 
public void putAtomCount(int count, 
                         int id, 
                         int num_iter) 

This method is for only debugging purposes, to make sure that an atom is 
assigned only to one thread in each iteration  
Parameters: 
count - - Number of atoms that the thread holds 
id - - thread index 
num_iter - - the current iteration step of the thread 

 

calculateTotals 
public void calculateTotals(int num_iter) 
                     throws java.lang.Exception 

Sum the individual contributions of each thread and calculate the total energy and 
temperature of the system  
Parameters: 
num_iter - - the iteration at which these energies and temperature are calculated  
Throws:  
java.lang.Exception 

 

calculateAvgsAndFlucs 
public void calculateAvgsAndFlucs() 
                           throws java.lang.Exception 

Calculate Averages and Fluctuations of Energies and Temperatures over the 
length of the simulation  
Throws:  
java.lang.Exception 

 

printEnergies 
public void printEnergies(int num_iterations, 
                          double total_energy, 
                          double pot_energy, 
                          double kin_energy, 
                          double temperature) 
                   throws java.lang.Exception 

Write energies and temperature to a file  
Parameters: 
num_iterations - - the iteration step at which these are written 
total_energy - - total energy of the system 
pot_energy - - potential energy of the system 
kin_energy - - kinetic energy of the system 
temperature - - temperature of the system  
Throws:  
java.lang.Exception 
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 7. class IO_Utils 

IO_Utils

doubleFormat(s : String, d : double, column_spaces : int) : String
intFormat(n : int, num_alloc : int) : String

 

Figure 16: Class IO_Utils 

IO_Utils is a helper class which has the methods for formatting numbers in a specific 

decimal format. This is useful while printing out energies and the final coordinates. The 

detailed description of the methods of this class is as follows: 

doubleFormat 
public static java.lang.String doubleFormat(java.lang.String s, 
                                            double d, 
                                            int column_spaces) 

formats a double number in the required format  
Parameters: 
s - - the string pattern representing the format e.g. "###.##" 
d - - the double that needs to be formatted 
column_spaces - - the number of spaces to be allocated for writing to file or 
console  
Returns: 
to_return - the formatted number as a string 

 

intFormat 
public static java.lang.String intFormat(int n, 
                                         int num_alloc) 

formats an integer to be outputted in a specified pattern  
Parameters: 
n - - the integer to be outputted 
num_alloc - - the number of spaces to be allocated while writing to file or console  
Returns: 
to_return -  the formatted number as a string 
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8. class LineReader 

LineReader
reader : BufferedReader

LineReader(source : InputStream)
readString(prompt : String) : String
readInt(prompt : String) : int
readDouble(prompt : String) : double

 

Figure 17: Class LineReader 

 
LineReader is a Helper Class which reads a line of input from the given input stream. 

This is used to read the positions, velocities and values of the constants used for 

computation, from input files. The detailed description of the methods of this class is as 

follows: 

readString 
public java.lang.String readString(java.lang.String prompt) 

reads a string input  
Parameters: 
prompt - - the prompt used to ask for input  
Returns: 
s - the string entered 

 

readInt 
public int readInt(java.lang.String prompt) 

reads an integer input  
Parameters: 
prompt - - the prompt used to ask for input  
Returns: 
input - the integer entered 

 

readDouble 
public double readDouble(java.lang.String prompt) 

reads a double input  
Parameters: 
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prompt - - the prompt used to ask for input  
Returns: 
input - the double entered 

 

 

9. class MdConstants 

MdConstants
ntot : int
eps : double
sigma : double
wmass : double
box_length : double
nstep : int
dt : double
tbath : double
ig : long
rcut : double
ntpr : int
hdt : double
hdt2 : double
ckb : double
M : int

 

Figure 18: Class MdConstants 

 
This class holds the variables that are central to all classes and have constant values.  
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10. class MdPar 

 

Figure 19: Class MdPar 

 
This is the class which drives the parallel program to simulate a group of atoms acted 

upon by a force called the Lennard-Jones force of interaction. It instantiates the threads 

each of which are assigned a number of partitions and responsible for simulating i.e. 

calculating the forces and displacing the atoms according to the forces, the atoms in the 

partitions assigned to it. .  This is the main class, which is responsible for starting the 

simulation. It creates an array of threads, joins them and records the time taken for the 

entire simulation.  This class is also responsible for 1) initializing the coordinates and 

velocities of the Atoms with the data read from the velocity and coordinate input files, 2) 

initializing the values of the physical constants required in the simulation with the data 

read from the md.dat input file and 3) write the final positions of the Atoms after 

simulation to the coordinates output file. The detailed description of the methods of this 

class is as follows: 
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main 
public static void main(java.lang.String[] args) 

 

readData 
private static void readData() 

Read Values from md.dat values and assign them to the values in the Constant 
class  

 

readCoordinates 
private static void readCoordinates() 

Read the coordinates from the positions file and assign to the atoms  
 

readVelocities 
private static void readVelocities() 

Reads the velocities from the file vel.in, this method is called only for testing 
purposes  

 

calculateVelocities 
private static void calculateVelocities() 

Calculates and sets the velocities of the atoms based on a random Gaussian 
distribution  

 

gauss 
private static double gauss(double am, 
                            double sd) 

assigns velocities to the atoms randomly based on the Gaussian distribution  
Parameters: 
am - - the mean of the distribution 
sd - - the random number seed  
Returns: 
r - the velocity assigned 

 

writeFinalCoords 
private static void writeFinalCoords() 

Write the Final Coordinates of each atom of the system, as a result of the 
simulation, to a file 
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11. class ObjBuf 

 

Figure 20: Class ObjBuf 

 
This class represents a buffer in which a thread can put an array of partitions or get an 

array of partitions from it. The put and get methods are synchronized, thus enabling 

synchronized communication between the threads. Each pair of neighboring threads 

shares two instances of this class, one for putting the partitions and another for getting the 

partitions. The put buffer for a thread will be the get buffer for its neighbor and vice-

versa. This class is used while transferring the partitions of a thread to all its neighboring 

threads at each iteration step. The detailed description of the methods of this class is as 

follows: 

 

put 
public void put(java.lang.Object x) 

Put an array of Partitions  
Parameters: 
x - - An Object 

 

get 
public java.lang.Object get() 

Get an array of Partitions  
Returns: 
x - An Object 
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12. class ParThread 

 

Figure 21: Class ParThread 

 
An instance of this class represents a thread which simulates the atoms in the partitions 

that are assigned to it. The detailed description of the methods of this class is as follows: 

join 
public void join() 

Joins the current Thread  
 

run 
public void run() 

This is the method that is started when the current thread is instantiated  
Specified by: 
run in interface java.lang.Runnable 

 

assign 
public void assign(int istep) 
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Assigns the atoms to the partitions of the current thread depending on their 
coordinates  

 

incrementVel 
public void incrementVel() 

Increment the Velocity as a result of the changes in the Forces for each atom in 
the partitions of the current thread  

 

defineShadows 
public void defineShadows() 

Define the Shadows to which the current thread will put its border partitions for 
its neighbors to Read  

 

defineBuffers 
public void defineBuffers() 

Define the Buffers from where the current thread gets the border partitions of all 
its neighboring threads  

 

putDummy 
public void putDummy() 

Put a dummy object into the neighboring shadows. This is only used for 
synchronization between neighboring threads  

 

getDummy 
public void getDummy() 

Get a Dummy Object from the neighboring buffers. This is only used for 
synchronization between neighboring threads  

 

force 
public void force() 

Calculate the forces and potential energy due to the interaction between the 
atoms, for each atom of the current thread  

 

calculateEnergies 
public void calculateEnergies(int istep) 

Calculate the energy (Kinetic and Potential ) contributions of the current thread 
and report them to the EnergyWriter Class  
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displace 
public void displace() 

Update the coordinates of the atoms of the current thread's partitions as a result of 
the interaction forces 

 
 
 
13 class Semaphore 

Semaphore
value : int

Semaphore()
Semaphore(initial : int)
P()
V()

 

Figure 22: Class Semaphore 

 
This is an abstract class representing a Semaphore, which is a classic method for 

restricting access to shared resources in a multi threaded environment. This is extended 

by BinarySemaphore and CountingSemaphore depending on the number of values it can 

have. The detailed description of the methods of this class is as follows: 

 

P 
public void P() 

P stands for Dutch "Proberen", to test. This method busy-waits until a resource is 
available whereupon it immediately claims one  

 

V 
public void V() 

V stands for Dutch "Verhogen", to increment. This method simply makes a 
resource available again after the process has finished using it. 
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CHAPTER 9: ASSESSMENT EVALUATION 
 
1. Introduction 

The purpose of this document is to outline the testing done on the project 

and the results of testing. The following sections describe the three types of 

testing done for this project, 1) Testing of the features of the program such as 

reading the input, 2) Functional testing such as checking if the program gives the 

same output when executed with any number of threads in the parallel program 

and 3) Performance testing which actually tests the performance of the parallel 

program i.e. the speed up achieved when running on multiple processors.  

 

2. References 

The following documents are used as a reference: 

• Test Plan 

• Software Requirements Specification 

 

3. Feature Testing 

The following features of the program are tested: 

• Read Data from files:  The program reads a line at a time as a string from 

the input file and parses the string and then applies the string functions to 

convert into an integer or a double. So it is very important that the form at 

is exactly as expected by the parser. The program throws appropriate 
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errors when an incorrect format is encountered. The table at the end of this 

section lists the test cases where this feature of the program is tested. 

• Read program arguments: The program has two arguments, 1) The 

number of threads which can be 1, 2, 4 or 8 for a small system and 1,2,4,8 

or 16 for a large system. The limit is 8 and 16, since the number of 

partitions in one direction is 8 for a small system and 16 for a large 

system. 2) An integer which specifies what system to simulate, 0 for small 

system and 1 for a large system. The program has to catch exceptions and 

throw an error, if the program has an incorrect number of arguments, or 

invalid arguments. The table at the end of this section lists the test cases 

where this feature of the program is tested. 

• Formatting values for output: The program outputs the total energy, 

potential energy, kinetic energy and the temperatures at each step in a 

fixed format i.e. each of these fields are printed with a fixed  spacing 

between them. If the length of one of the fields is larger than the spacing, 

an exception should be thrown. This in a way also indicates that the values 

are incorrectly calculated by the program, since usually the lengths of the 

fields fall within the space allocated for them. As a test case, the forces of 

each of the atoms are not initialized in the force () method of the program. 

So, the values of the potential energy and kinetic energy keep increasing 

until they are no longer small to be printed out in the desired format. This 

test case is shown in the following table.  
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The following table describes the test cases and the results: 

 
Test Unit Test Case Result 

Read Data from files md.dat input file with line 9 
in incorrect format 

Error : Line 9 in the file 
md.dat is not in the format 
expected. 

Read Data from files vel.in input file with line 38  
in incorrect format 

Error : Line 38in the file 
vel.in is not in the format 
expected. 

Read Data from files init_positions  input file 
with line 256 in incorrect 
format  

Error : Line 256 in the file 
init_positions is not in the 
format expected. 

Format values for output Forces are not initialized. Error: The values of the 
fields are too large to be 
printed. 

Read program arguments java mdpar/MdPar Usage: java mdpar/MdPar 
arg1 arg2 
where 
   arg1: number of threads 
       = 1,2,4 or 8 for a small 
system 
       = 1,2,4,8 or 16 for large 
system 
   arg2: system identifier 
       = 0 for small system 
       = 1 for large system 

Read Program arguments java mdpar/MdPar 16 0 Error: Incorrect number of 
threads for the system 
chosen 
Usage: java mdpar/MdPar 
arg1 arg2 
where 
   arg1: number of threads 
       = 1,2,4 or 8 for a small 
system 
       = 1,2,4,8 or 16 for large 
system 
   arg2: system identifier 
       = 0 for small system 
       = 1 for large system 

Read Program Arguments Java mdpar/MdPar 4 3 Error: Incorrect choice for 
system identifier 
Usage : java mdpar/MdPar 
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arg1 arg2 
where 
   arg1: number of threads 
       = 1,2,4 or 8 for a small 
system 
       = 1,2,4,8 or 16 for large 
system 
   arg2: system identifier 
       = 0 for small system 
       = 1 for large system 

Table 7: Test Cases and Results 

 
4. Functional Testing: 

The result of the program varies from system to system and for each run, 

since the velocities are randomly generated using a Gaussian distribution. To 

verify that the parallel program which is run with 1, 2, 4 and 8 threads is 

producing the same results each time, the velocities are read from a file “vel.in”, 

instead of generating randomly. The velocities are read from the file only for 

testing purposes. The results obtained are checked against a standard sequential 

program written for the same purpose and with the similar inputs.  The following 

is the result for a system of 6860 particles and the input files md_small.dat, 

init_positions_small and vel.in. The values are printed out for every 10 time steps. 

 
Time Step Time(ps) TE PE KE TEMP

0 0 11537.58 -13958.42 25496 298.05
10 0.1 11538.62 -14032.79 25571.42 298.93
20 0.2 11537 -13912.55 25449.55 297.51
30 0.3 11537.44 -14058.29 25595.73 299.22
40 0.4 11537.62 -13931.52 25469.13 297.74
50 0.5 11536.81 -14045.47 25582.27 299.06

Averages   
50 0.5 11537.17 -13997.07 25534.24 298.5

Fluctuations   
50 0.5 1.07 66.48 65.95 0.77
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5. Performance Testing 

This section describes the performance measurements done on the program, 

i.e. the speed-up as a function of number of threads and granularity is measured 

and plotted, for each of the designs that have been come up with while working 

on the project and also explains the key concepts of each design as an attempt to 

justify the performance.  

 

• Initial Design: 3-D grid shaped pattern of thread creation and 

synchronization by message passing through bounded buffers and each 

thread is assigned to a partition owing to code simplicity. So there are 512 

threads. The program took far longer to run when running as 512 threads, 

which is justified due to the huge overhead in creating so many threads. 

The number of threads and the system size has been hard coded into the 

system so there is no possibility of running the program with different 

arguments. 

• Design I: 3-D grid shaped pattern of thread creation and synchronization 

by message passing through bounded buffers and multiple partitions are 

assigned to each thread.  Since there are 8x8x8 partitions, it would be only 

possible to create an array of 2x2x2 or 4x4x4 threads with 4x4x4 or 2x2x2 

partitions assigned to each thread.  Creating 8x8x8 threads and assigning 

one partition per thread will cause an excessive overhead in thread 

creation which increases the execution time enormously. For a larger 
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system similar number of threads can be created with more granularities. 

The following tables give the speed-ups and efficiencies for different 

granularities and number of threads. The speed-up is defined as the ratio 

of the time taken to run on one thread to the tine taken when running on 

multiple threads. The efficiency is defined as the ratio of the speed-up to 

the number of processors (equal to 4 in this project).  

 

Less Granularity (System size = 6860 Atoms) 

 
Number of 

Threads Time Taken Speed-up Efficiency 

1 179625 -- -- 
8 174393 1.03 25.75 
64 216415 0.83 20.75 

Table 8: Speedup (Design I, fine grained) 
 
More Granularity (System size = 54880 Atoms) 
 

Number of 
Threads Time Taken Speed-up Efficiency 

1 1726549 -- -- 
8 1676261 1.03 25.75 
64 2105547 0.82 20.5 

Table 9: Speedup (Design I, coarse grained) 
 

 

The reasons why the speed up is very low is that though multiple 

partitions are assigned to one thread, there is a significant amount of 

message passing which involves copying large 3 dimensional arrays. Also, 

the number of available processors is only four, so there is a considerable 

amount of thread switching especially with 64 threads.  The amount of 
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copying is still huge for the larger system, hence the slight decrease in 

speed-up when compared to the smaller system. The plot of speedup vs. 

number of threads for different granularities is as shown (In the legend, 

Fine Grained implies system with less granularity i.e. the smaller system 

and Coarse Grained implies more granularity i.e. the larger system):  
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Figure 23: Plot of Speedup vs. no of threads (Design I) 
 
 
• Design II: Vertical pipeline shaped pattern of thread creation and 

synchronization by message passing through bounded buffers and 

multiple partitions are assigned to each thread. The idea here is to 

assign layers of partitions to each thread rather than a 3-D array of 
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partitions to each thread like in the previous design. Since there are 8 

layers of partitions with 8x8 partitions in each layer, the number of 

threads could be 1,2 4, or 8 with 8,4,2,1 layers assigned to each thread 

respectively. Similarly, for the larger system, the number of threads 

could be 1,2,4,8 or 16 with 16, 8,4,2,1 layers assigned to each thread 

respectively. The following tables give the speed-ups and efficiencies 

for different granularities and number of threads.  

 
Less Granularity (System size = 6860 Atoms) 
 

Number of 
Threads Time Taken Speed-up Efficiency 

1 170062 -- -- 
2 158936 1.07 26.75 
4 104796 1.62 40.5 
8 126911 1.34 33.5 

Table 10: Speedup (Design II , fine grained) 

 
 
More Granularity (System size = 54880 Atoms) 
 

Number of 
Threads Time Taken Speed-up Efficiency 

1 1699526 -- -- 
2 1559198 1.09 27.25 
4 982384 1.73 43.25 
8 1196849 1.42 35.5 

Table 11: Speedup (Design II, coarse grained) 

 
The speedup has been improved considerably compared to the previous 

design, especially with the number of threads equal to 4.  This is because, 

though the synchronization mechanism is message passing, the amount is 

copying is far less than the previous model since only one layer of 

partitions is copied rather than copying the whole three dimensional array 
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of partitions. The speedup with four threads is the highest since the 

number of processors available are four. The speed up with eight threads 

is a little less due to thread switching. Also an increase in speedup is 

observed with the larger system due to more granularities. It is slight since 

the amount of copying is also increased when moving to larger system. 

The plot of speedup vs. number of threads for different granularities is as 

shown (In the legend, Fine Grained implies system with less granularity 

i.e. the smaller system and Coarse Grained implies more granularity i.e. 

the larger system): 
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Figure 24: Plot of Speedup vs. no of threads (Design II) 

 
• Final design: Vertical pipeline shaped pattern of thread creation and 

synchronization by Barrier. Bounded buffer is also used to synchronize 
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whenever only the neighboring threads need to stop and synchronize. 

No messages are passed. The Barrier is used when all the threads need 

to stop and synchronize. The number of threads that could be created 

and the number of layers of partitions assigned to each are the same as 

in the previous design. The following tables give the speed-ups and 

efficiencies for different granularities and number of threads: 

 
Less Granularity (System size = 6860 Atoms) 
 

Number of 
Threads Time Taken Speed-up Efficiency 

1 162653 -- -- 
2 137841 1.18 29.5 
4 62800 2.59 64.75 
8 66935 2.43 60.75 

Table 12: Speedup (Final Design, fine grained) 

 
More Granularity (System size = 54880 Atoms) 
 

Number of 
Threads Time Taken Speed-up Efficiency 

1 1684963 -- -- 
2 1306172 1.29 32.25 
4 591215 2.85 71.25 
8 640670 2.63 65.75 

Table 13: Speedup (Final Design, coarse grained) 

  
 

The speedup has been improved considerably compared to the previous 

design. This is because the synchronization mechanism is changed from 

bounded buffer to barrier. Thus, there is no message passing and hence no 

copying of huge data structures at each step. Instead the data structures are 

static which each of the threads can access and the critical sections are 

guarded by barriers. Also an increase in speedup is observed with the 
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larger system due to more granularities. The maximum speed up that could 

be achieved is only 2.85. A possible reason for this is that all the four 

threads are not really running independent of each other. They will have to 

stop at different points to synchronize with each other. In this design, all 

the threads will have to stop twice and the neighboring threads have to 

stop four times to synchronize during a single time step. So, delays occur 

and there is a decrease in speedup. The plot of speedup vs. number of 

threads for different granularities is as shown: 
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Figure 25: Plot of Speedup vs. no of threads (Final Design) 
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Notes:  

• It was ensured that none of the users are logged on to the system 

except the Developer while timing the programs. And the %CPU of 

the user averaged around 94%.  

• All the I/O operations in the program were commented out for timing 

the programs. 

• All the timings are for 50 iteration steps in the simulation. 
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CHAPTER 10: USER MANUAL 
 
1. Introduction 

 The purpose of this project is to develop software in Java that uses MD 

Simulation technique to simulate the interaction between atoms in a group of molecules 

which interact due to Lennard-Jones potential (or any other similar system whose motion 

can be simulated by stepping through discrete instants of time). Multi-threaded 

programming that can be executed on more than one processor will be used to improve 

the efficiency of the system. Various designs for a parallel program based on 1) 

Synchronization mechanism, 2) the pattern of thread creation and 3) Granularity are 

implemented and performance measurements are done to calculate the speed-up for all 

the implementation of each design.  

 The following sections describe the data formats, the usage of the program, user 

commands, the system configuration and how to carry out the performance 

measurements. 

 

2. Data Formats 

 

2.1 Input Data Format 

 The software has two input data files, the coordinates input file 

(init_positions_small for the system with 6860 atoms and init_positions_big for the 

system with 54880 atoms) and the data input file (md_small.dat for the system with 6860 

atoms and md_big.dat for the system with 54880 atoms).  The format for the data input 

file should be as follows: 
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6860 NTOT number of particles 

1.0000 EPS epsilon (kJ/mol) 
0.3000 SIGMA sigma (nm) 

20.0 WMASS mass (amu) 
8.09202 BOX box length (nm) 

50 NSTEP number of dynamics steps 
0.0100 DT time step (ps) 
300.0 TBATH initial temperature (K) 
17841 IG random number seed 

1.00 RCUT LJ cutoff distance (nm) 
10 NTPR print energies every NTPR steps 

1000 NTWX write coordinates every NTWX steps 
1000 NTWE write energies every NTWE steps 

 
Basically the constraint is that the values should occupy at most the first 10 characters of 

each line and the order of the property – value pairs should be preserved i.e. NTOT 

should always be the first line, followed by EPS etc.  

 

The format of the coordinates input file should follow the pdb (protein data bank) format. 

For more information on the pdb format, please refer 

http://www.umass.edu/microbio/rasmol/pdb.htm.  The first few lines of the coordinates 

input files are as follows:  

 
ATOM      1  B   B       1     -20.512   7.215  33.289  0.00  0.00 
ATOM      2  B   B       2     -22.849   1.471 -25.234  0.00  0.00 
ATOM      3  B   B       3      40.181 -34.958  10.244  0.00  0.00 
ATOM      4  B   B       4      27.884  19.728 -18.005  0.00  0.00 
ATOM      5  B   B       5     -18.798  15.000   5.051  0.00  0.00 
ATOM      6  B   B       6      -1.832  10.136  39.148  0.00  0.00 
ATOM      7  B   B       7     -29.855  18.356  22.965  0.00  0.00 
 
For the purpose of this project, the constraints are 1) the total number of lines in this file 

should be equal to the number of atoms in the simulation system and 2) the x, y and z 
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coordinate values should be between the 26th and 38th character positions, 39th and 46th 

character positions, 47th and 54th character positions respectively. 

 
For testing purposes, the velocities have to be read from the file “vel.in” (this is only for 

the system with 6860 particles). The total number of lines in this file should be equal to 

the number of atoms in the simulation system and the format is shown as below (the first 

few lines in the file are shown): 

 
-0.468415343794807              0.366741958309217             0.798061712445195      
  2.630747657094827E-002  -6.747689914408322E-002  -7.582933435198365E-002 
 -0.617412010567999             0.339550740206594            -0.167975555032691      
  0.585295550026653            -0.191146826899770              0.293272860486950      
  6.131226309386512E-002  -0.182546512969571             -0.365545674040731      
  0.106814174639356           -0.107245268069441              -0.423193642978872      
 
Basically, the constraint is that the each of the velocities in a line should be within the 

allocated number of characters for it which is 24, i.e. the x coordinate of velocity should 

be within the first 24 characters, and the y coordinate of velocity should be within the 

next 24 characters and so on. 

 

2.2 Output Data Format 

 There are two output files for this program:  

final_positions:  The final coordinates in all directions (x, y and z) of each atom are 

written to this file after the end of the simulation. The format of the file is similar to the 

coordinates input file.  

 

md.out:  The energies and the temperature at every given number of time steps are 

written to this file. Also written at the end of the file are the averages and fluctuations of 
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the energies and temperature during the entire simulation. The following shows a sample 

output file when we ask the program to print energies and temperatures every ten steps: 

 
 
Time Step    Time (ps)              TE              PE              KE        TEMP 
             0                   0    11537.58   -13958.42         25496      298.05 
           10                0.1    11538.62   -14032.79    25571.42      298.93 
           20                0.2         11537   -13912.55    25449.55      297.51 
           30                0.3    11537.44   -14058.29    25595.73      299.22 
           40                0.4    11537.62   -13931.52    25469.13      297.74 
           50                0.5    11536.81   -14045.47    25582.27      299.06 
  Averages 
           50                0.5    11537.17   -13997.07    25534.24        298.5 
  Fluctuations 
           50                0.5           1.07           66.48          65.95           0.77 
 
 
 
3. Using the System 

  

3.1 Changing the Inputs 

 The Parameters that one would want to change frequently are the: 

• Total number of atoms in the system 

• Total number of simulation steps 

• Size of the simulation system  i.e. the length of the simulation box 

• The interval (number of steps) at which to print energies and temperatures 

 

To change the number of atoms in the simulation system, edit the input data file and 

change the value of NTOT accordingly. We also need to make sure that the coordinates 

input file has the exact number of entries corresponding to the total number of atoms in 

the system. In the current project, an initial coordinates file is given which corresponds to 
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a system with 6860 particles and a simulation box length (represented by BOX in the 

input data file) of 8.09202 nm. We also need a larger system for higher granularity i.e. the 

computation per thread relative to the communication between the threads, to measure 

the speed up as a function of granularity. So, a small program “replicator.java” is written 

to replicate the system of 6860 particles into a bigger system with 54880 particles i.e. 

eight times the size of the original system. Correspondingly the parameter BOX has to be 

changed to 16.18404 nm i.e. twice the length of the original simulation box.  

  

To facilitate ease of use and since there are only two sizes of the system we wish to 

simulate, the input data file is split into two files: 

 

1) md_small.dat, which is read by the program when simulating the small system. The 

values of NTOT and BOX in this file are always 6860 and 8.09202 respectively. 

2) md_big.dat, which is read by the program when simulating the big system.  The values 

of NTOT and BOX in this file are always 6860 and 8.09202 respectively. 

 

This obviates the changing of the input data file every time we switch between simulation 

of small system and big system. The other parameters such as the number of simulation 

steps should be changed via the corresponding input data file though.   

 

The total number of simulation steps can be changed via the parameter NSTEP in the 

input data file. We might need to increase the number of simulation steps speculating for 
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an increase in speed-up, since there is an overhead in creating the threads and a lengthy 

simulation might significantly reduce the effect. The default value for NSTEP is 50. 

 

The NTPR parameter in the input data file has to be changed to change the interval 

(number of steps) at which to print energies and temperatures. The default is 10 i.e. the 

energies and the temperature of the system are printed to the console and a file after every 

10 steps.  It is advisable to keep this value as high as possible, since the frequent I/O 

operations reduce the efficiency of the system.  

 

3.2 User Commands 

 

3.2.1 To compile the source code: 

1) Navigate to the src directory of the corresponding folder (sequential for the 

sequential program and parallel for the parallel program). 

 2) Run the following command: 

  java –d  ../classes mdseq/*.java    -- for compiling the sequential program 

  java –d ../classes mdpar/*.java     -- for compiling the parallel program 

 

3.2.1 To generate javadoc documentation API: 

1) Navigate to the src directory of the corresponding folder (sequential for the 

sequential program and parallel for the parallel program). 

 2) Run the following command: 

  javadoc –d  ../docs  mdseq/*.java     
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-- for generating API for  the sequential program 

  java –d  ../docs  mdpar/*.java      

-- for generating API for  the parallel program 

 

3.2.1 To run the program 

1) Navigate to the src directory of the corresponding folder (sequential for the 

sequential program and parallel for the parallel program). 

2) Execute the following command for running the sequential program: 

 java mdseq/MdSeq   

3) Execute the following command to run the parallel program: 

 java mdpar/MdPar arg1 arg2  

Where 

   arg1: number of threads 

       = 1, 2, 4 or 8 for a small system 

       = 1,2,4,8 or 16 for large system 

         arg2: system identifier 

       = 0 for small system 

       = 1 for large system 

 

Note: The above commands are stated assuming that the user installs the source code on a 

system according to the instructions in the System configuration and Installation section 

and the directory structure is preserved. 
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3.3 Performance Measurements 

 One of the Objectives of the project is to examine the speed-up of the parallel 

program as a function of the number of threads and the granularity for each design as 

stated in the Architecture design document.  To conduct the performance measurements 

the program is run with different arguments as shown in the previous section and the time 

taken to run is noted. The number of threads to run can be varied by changing the first 

argument and the granularity in each run can be varied by choosing to run the smaller 

system or the larger system which requires changing the second argument. 

 

4. System configuration and Installation 

 The program could be run on any multi processor system with Java-1.3 or higher 

installed in it.  To install Java please visit http://java.sun.com . The user commands listed 

in the previous section were run on a UNIX terminal. The source code is available from 

the project’s website at http://www.cis.ksu.edu/~ganti/mse_pro.htm  in the form of a zip 

file. Extract the contents to a working directory. The directory structure is explained as 

follows. The top level directories separate the parallel program (parallel) and the 

sequential program (sequential). Inside each directory: 

• The src folder has the actual source code.  

• The classes folder has the compiled classes 

• All the necessary input files are placed in the resources folder 

• All the output files will be placed in the results folder 

• All the generated documentation is in the docs folder 
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There is an additional folder named utils folder at the top level apart from the parallel and 

sequential folders which has the source code for the replicator program that generates an 

initial coordinates file for the bigger system (initial_positions_big) by taking the initial 

coordinates file for the smaller system (initial_positions_small) as an input.  The user has 

to preserve the directory structure for the user commands listed in the previous section. 

 

5. Useful Tips for running parallel programs 

• It is often useful to know if the all the threads in the parallel program are indeed 

utilizing all the processors available in the system. To determine this, a utility for UNIX 

systems called top is used. Running the top command in a terminal gives the usage 

statistics of the processors of the system. This is what top might look like if you had a 

multithreaded application which was taking up a large amount of cpu time on all 

processors.  The main thing to look for is that if the %CPU does (in this case 96, 96, 94.1, 

and 90.5) add up to over 100, then all the available processors are being utilized.  

 
  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  Command 
  706 ganti     18   0  6264 6264 4252 R 96.0  0.2   0:05.20 java 
  751 ganti     18   0  6256 6256 4256 R 96.0  0.2   0:03.18 java 
  616 ganti     17   0  6264 6264 4252 R 94.1  0.2   0:10.85 java 
  661 ganti     15   0  6264 6264 4252 R 90.5  0.2   0:08.58 java 

 
• When timing the programs it is important that the CPU is exclusively used by the 

program to give accurate results. That is, the user needs to make sure that there are no 

other programs currently running that take the CPU processing time.  The top command 

is useful for this purpose also. It lists all the processes that are being executed currently.  
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• Some operating systems are set to run the threads as native by default i.e. the 

threads spawn all the processors available. But in case where it is not so, the          –native 

option of java is to be used. 
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CHAPTER 11: PROJECT EVALUATION 
 
 
1. Introduction: 

 This document describes the review of the project in terms of the problems 

encountered, accuracy of the estimations, usefulness of the reviews and the 

methodologies used. It also describes the evaluation of the project for whether it 

accomplishes the ideas presented in the initial overview. 

 

2. Problems Encountered 

 

2.1 JPF 

 JPF is a tool for verification and debugging of Java programs based on model 

checking. A lot of learning and researching had to be done by the developer to figure out 

the options offered by the tool for the verification of the program. The default options 

take a very long time to complete the verification owing to the huge state space of the 

program.  

 

2.2 Debugging Parallel Programs 

 Owing to the inherent complex nature of parallel programs, the developer had to 

spend a lot of time debugging for the implementation of each design. The developer had 

to implement different parallel algorithms before arriving at the final design which is best 

suited for Molecular Dynamics Simulation. 
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2.3 Limited availability of systems 

 The developer had access to only one multi processor system and has to wait for 

times when no users are logged on, to time the execution of the parallel program with 

varying number of threads. It is important that the CPU is used entirely by the 

developer’s program for the speed-up and efficiency results to be correct. Also, the 

system often rebooted with only one processor accessible. 

 

2.4 Limited processing power of available systems 

 The available four processor systems sunflower.cis.ksu.edu and 

blackeye.cis.ksu.edu have a limited processing power. Each processor is only in the range 

of 400 MHz – 500 MHz.  Running the simulation with the larger system (i.e. 54880 

atoms) took as long as 35 minutes. 

 

2.5 Breaks 

 The developer had to take long breaks in the duration of the project due to 

unforeseen reasons which made it difficult to recapitulate the work done in the previous 

phase.   

 

3. Accuracy of the Estimates 

  

3.1 Lines of Code 

 The following table shows the estimated LOC and the actual LOC for the 

sequential and the parallel program: 
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 Estimated LOC Actual LOC 
Sequential 1435 504 
Parallel 1545 1271 
Table 14: Estimated and actual LOC 

 
The reason for the wide variation in LOC of sequential program could be that it is too 

simple to be estimated. The number of LOC for the parallel program is quite close to the 

estimate.  

 

3.2 Cost Estimation 

  The cost estimation was done using the functional point analysis and the 

COCOMO model.  The total time taken for the sequential program and the parallel 

program is 3.9 + 4.2 = 8.1 months. The duration of the project is approximately 7 months 

which is quite close to the estimate.  

  

4. Lessons Learnt 

 

4.1 Methodology 

On completion of the project, the developer realizes the usefulness of following 

the software methodologies and the life cycle. The MSE portfolio served as a useful 

guide throughout the project.  The developer believes that this project experience has 

equipped him with a better understanding of a software life cycle and will be a guiding 

factor in future software projects. 
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4.2 Reviews 

 The usefulness of the reviews and the feedback is an important lesson learnt in 

doing this project. Besides getting valuable feedback from the major advisor, the 

committee as a whole also reviewed the progress of the project and gave valuable inputs 

during presentations, which made this project learning experience and helped to improve 

the quality of the product. 

 

5. Results 

 As described in the overview, various parallel algorithms based on 1) 

Synchronization mechanism, 2) the pattern of thread creation and 3) Granularity, are 

implemented to determine the best suitable design for the Molecular Dynamics 

Simulation.  Its is determined that an implementation based on the Vertical pipeline 

thread creation pattern with the mixed use of a Barrier and a Bounded Buffer for 

synchronization and  a large granularity, yielded the highest speed-up. The source code 

for this design is submitted with the Final report. The results for all the designs were 

documented in the Performance Testing section of the Assessment Evaluation document.  

 The maximum speed-up achieved in the project is 2.85 four threads running on a 

four processor machine.  So, the efficiency is (2.85/4)*100 = 71.25%.  The reason 

attributed to this is that all the four threads are not really running independent of each 

other. They will have to stop at different points to synchronize with each other. In this 

design, all the threads will have to stop twice and the neighboring threads have to stop 

four times to synchronize during a single time step. So, delays occur and the efficiency is 

substantially decreased. 
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CHAPTER 12: FORMAL TECHNICAL INSPECTION 
 
1. Introduction 

 The purpose of this document is to provide a formal checklist to inspect the 

architecture design document of the Molecular Dynamics Simulation project. The 

purpose of the formal technical inspection process is to ensure the quality and feasibility 

of the architecture design. Two independent MSE students will perform the inspection 

and their report on the result of the inspection will be documented.  

 

2. Items to be inspected 

 The Architecture design document is the item to be inspected. The inspectors will 

be provided with the vision document for reference purpose. 

 

3. Organization  

  

 Graduate Committee 

 Dr. Virgil Wallentine – Major Professor 

 Dr. Paul Smith 

 Dr. Mitch Neilsen 

 

 Developer 

 Lakshmikanth Ganti 
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Formal Technical Inspection Performed by 

 Srinivas Kolluri 

 Laxminarayan M 

 
 
4. Formal Technical Inspection Checklist 
 
Questions Yes/No/Partial Comments 
Are design decisions for the 
current release documented 
as completely and as 
thoroughly as is known at 
the present time?  
 

Yes The document is iteratively 
written for each design. 

Are the design views 
presented as per UML 
standards? 

Yes Class diagrams and 
sequence diagrams are used 
to illustrate the program 

Is a class diagram present 
in the design document? 

Yes  

Does the design document 
talk about software 
architecture and how the 
threads are created and 
how they communicate? 
 

Yes Different thread creation 
patterns and the 
communication between 
them are explained. 

Single Interpretation: Does 
every design decision 
documented in SDD have 
only a single interpretation 
that is the same for both 
those who produce it and 
those who read it? 
 

Yes  

Does the SDD document all 
significant unit design 
decisions? 

Yes  

Is the SDD consistent with 
higher-level documents 
(e.g., System Requirements 
Specification, Project 
Glossary, Domain Object 
Model, and Software 
Architecture Document)? 

Yes  
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Does the SDD have a 
coherent, easy-to-use 
organization? 

Yes  

Are the design decisions 
neither redundantly stated 
nor intermingled? 

Yes  

Is consistent level of detail 
provided with design 
statements? 

Yes  

Table 15: Formal Technical Inspection Checklist 
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APPENDIX A 
 
Source Code for verification with JPF 
 
import gov.nasa.arc.ase.jpf.jvm.Verify; 
import java.lang.Math; 
 
class ObjBuf 
{ 
 private int[] array; 
 private boolean valueSet = false; 
 public ObjBuf() {} 
 
 public synchronized void put(int[] x) 
 { 
  if(valueSet) 
   try{wait();} 
   catch(InterruptedException e) {Verify.print("Exception Caught" 
+e.toString());} 
  array = new int[x.length]; 
  for(int i=0; i<x.length;i++) 
   array[i] = x[i]; 
  valueSet=true; 
  notify(); 
 } 
 public synchronized int[] get() 
 { 
  if(!valueSet) 
   try{wait();} 
   catch(InterruptedException e) {Verify.print("Exception Caught" 
+e.toString());} 
  int[] x = new int[array.length]; 
  for(int i=0; i<array.length;i++) 
   x[i] = array[i]; 
  valueSet=false; 
  notify(); 
  return x; 
 } 
} 
 
 
class MD_Thread  extends Thread 
{ 
 private ObjBuf put_buffer1; 
 private ObjBuf get_buffer1; 
 private ObjBuf put_buffer2; 
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 private ObjBuf get_buffer2; 
 private int num_iterations = 5; 
 private int iter_step = 0; 
 private int length = 1; 
 private int[] putArray1; 
 private int[] getArray1; 
 private int[] putArray2; 
 private int[] getArray2; 
 private int xid; 
 private int yid; 
 private boolean has_two_neighbors; 
 
 public MD_Thread(ObjBuf put_buffer1, ObjBuf get_buffer1, ObjBuf put_buffer2, 
ObjBuf get_buffer2,int xid,int yid,boolean has_two_neighbors) 
 { 
  this.put_buffer1 = put_buffer1; 
  this.get_buffer1 = get_buffer1; 
  this.put_buffer2 = put_buffer2; 
  this.get_buffer2 = get_buffer2; 
  this.xid = xid; 
  this.yid = yid; 
  this.has_two_neighbors = has_two_neighbors; 
  putArray1 = new int[length]; 
  putArray2 = new int[length]; 
  this.start(); 
 } 
 
 public void run() 
 { 
  for(int i = 0; i< num_iterations; i++) 
  { 
   putArray1[0] = iter_step; 
   putArray2[0] = iter_step; 
   try 
   { 
    put_buffer1.put(putArray1); 
    Verify.print("put array1, thread " + xid + " " + yid + " " + 
iter_step); 
    getArray1 = get_buffer1.get(); 
    Verify.print("Got array1, thread " + xid + " " + yid + " " + 
iter_step); 
    if (has_two_neighbors) 
    { 
     put_buffer2.put(putArray2); 
     Verify.print("put array2, thread " + xid + " " + yid 
+ " " + iter_step); 
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     getArray2 = get_buffer2.get(); 
     Verify.print("Got array2, thread " + xid + " " + yid 
+ " " + iter_step); 
    } 
   } 
   catch (Exception e) 
   { 
    Verify.print("Exception Caught" +e.toString()); 
   } 
    
   if(has_two_neighbors) 
    Verify.assertTrue("neighbor out of 
step",(Math.abs(getArray1[0]- iter_step)<=1 ) && (Math.abs(getArray2[0]-iter_step) 
<=1)); 
   iter_step++; 
  } 
  Verify.print("End of iterations"); 
 } 
 
} 
 
 
class Parameters 
{ 
 static final int ObjBuf_size = 4; 
 static final int MD_Thread_size = 3; 
} 
 
class mse_check2 
{ 
 public static void main(String[] args)  
 { 
  ObjBuf   b1 = new ObjBuf(); 
  ObjBuf   b2 = new ObjBuf(); 
  ObjBuf   b3 = new ObjBuf(); 
  ObjBuf   b4 = new ObjBuf(); 
  MD_Thread  md1 = new MD_Thread(b1,b2,b3,b4,0,0,true); 
  MD_Thread  md2 = new MD_Thread(b2,b1,b3,b4,0,1,false); 
  MD_Thread  md3 = new MD_Thread(b4,b3,b3,b4,1,0,false); 
  /*try { 
    md1.join(); 
    md2.join(); 
    md3.join(); 
   } 
  catch(Exception e) 
  { 
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   Verify.print(e.toString()); 
  } 
  Verify.print("executing of threads complete, going to quit");*/ 
 } 
} 
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