
Chapter 8

SOFTWARE-TESTING STRATEGIESSOFTWARE-TESTING STRATEGIES

Achmad Benny Mutiara
amutiara@staff.gunadarma.ac.id@ g

8 1 STATIC-TESTING STRATEGIES8.1 STATIC-TESTING STRATEGIES

 Static testing is the systematic examination of a program structure for theStatic testing is the systematic examination of a program structure for the
purpose of showing that certain properties are true regardless of the
execution path the program may take.

Consequently some static analyses can be used to demonstrate the– Consequently, some static analyses can be used to demonstrate the
absence of some faults from a program.

 Static testing represents actual behavior with a model based upon theStatic testing represents actual behavior with a model based upon the
program’s semantic features and structure.
– Human comparison often consists of people exercising little discipline in

comparing their code against notions of intent that are only loosely andcomparing their code against notions of intent that are only loosely and
imprecisely defined. But human comparisons may also be quite structured,
rigorous, and effective as is the case of inspections and walkthroughs, which
are carefully defined and administered processes orchestrating groups ofare carefully defined and administered processes orchestrating groups of
people to compare code and designs to careful specifications of intent.

1

 Static testing strategies include: Static testing strategies include:
– Formal technical reviews

Walkthroughs– Walkthroughs
– Code inspections

Compliance with design and coding standards– Compliance with design and coding standards

2

8 1 1 Formal Technical Reviews8.1.1 Formal Technical Reviews

 A review can be defined as:A review can be defined as:
– A meeting at which the software element is presented to project

personnel, managers, users, customers, or other interested parties
f lfor comment or approval.

 What is a software review? A software review can be defined
as a filter for the software-engineering process.

 The purpose of any review isThe purpose of any review is
– to discover errors in the analysis, design, and coding, testing and

implementation phases of the software development cycle.
f– to see whether procedures are applied uniformly and in a

manageable manner.

3

Objectives for ReviewsObjectives for Reviews

 Review objectives are used:Review objectives are used:
– To ensure that the software elements conform to their specifications.
– To ensure that the development of the software element is being

done as per
– plans, standards, and guidelines applicable for the project.

To ensure that the changes to the software elements are properly– To ensure that the changes to the software elements are properly
implemented

– and affect only those system areas identified by the change
specification.

4

Types of ReviewsTypes of Reviews

 Reviews are one of two types: informal technical reviewsReviews are one of two types: informal technical reviews
and formal technical reviews.
– Informal Technical Review: An informal meeting and informal

desk checking.
– Formal Technical Review (FTR): A formal software quality

assurance activity through various approaches such as structuredassurance activity through various approaches, such as structured
walkthroughs, inspections, etc.

5

What is a Formal Technical Review (FTR)?What is a Formal Technical Review (FTR)?

 A formal technical review (FTR) is a software quality assuranceA formal technical review (FTR) is a software quality assurance
activity performed by software-engineering practitioners to
improve software product quality.
– The product is scrutinized for completeness, correctness, consistency,

technical feasibility, efficiency, and adherence to established standards
and guidelines by the client organizationand guidelines by the client organization.

 The FTR serves as a training ground, enabling junior engineers
t b diff t h t ft l i d ito observe different approaches to software analysis, design,
and implementation. Each FTR is conducted as a meeting and
will be successful only if it is properly planned controlled andwill be successful only if it is properly planned, controlled, and
attended.

6

Objectives of a Formal Technical ReviewObjectives of a Formal Technical Review

 The various objectives of a formal technical review are as
follows:
– To uncover errors in logic or implementation.

To ensure that the software has been represented according to– To ensure that the software has been represented according to
predefined standards.

– To ensure that the software under review meets the requirements.
– To make the project more manageable.

 For the success of a formal technical review, the following areFor the success of a formal technical review, the following are
expected:
– The schedule of the meeting and its agenda reach the members well

i din advance.
– Members review the material and its distribution.
– The reviewer must review the material in advanceThe reviewer must review the material in advance.

7

The Review MeetingThe Review Meeting

 The meeting should consist of two to five people and shouldThe meeting should consist of two to five people and should
be restricted to not more than two hours (preferably).

Th i f th i i t i th d t/ k d th The aim of the review is to review the product/work and the
performance of people.

When the product is ready the producer (developer) informs– When the product is ready, the producer (developer) informs
the project leader about the completion of the product and
requests for review. The project leader contacts the review
leader for the review.

– The review leader asks the reviewer to perform an
independent review of the product/work before the scheduledindependent review of the product/work before the scheduled
FTR.

8

Results of FTRResults of FTR

 Meeting decisionMeeting decision
1. Whether to accept the product/work without any modifications.
2. Accept the product/work with certain changes.
3. Reject the product/work due to error.

 Review summary report Review summary report
1. What was reviewed?
2. Who reviewed it?
3. Findings of the review.
4. Conclusion.

9

8 1 2 Code Walk-throughs8.1.2 Code Walk-throughs

 A code walk-through is an informal analysis of code as aA code walk through is an informal analysis of code as a
cooperative, organized activity by several participants.

Th l i i b d i l th f “ l i th The analysis is based mainly on the game of “playing the
computer.”

That is participants select some test cases (the selection could have– That is, participants select some test cases (the selection could have
been done previously by a single participant) and simulate execution
of the code by hand.

– This is the reason for the name walk-through: participants “walk
through the code” or through any design notation.

10

In general the following prescriptions are recommended:In general, the following prescriptions are recommended:

 Everyone’s work should be reviewed on a scheduled basis.
Th b f l i l d i h i h ld b ll (h fi) The number of people involved in the review should be small (three to five).

 The participants should receive written documentation from the designer a
few days before the meeting.few days before the meeting.

 The meeting should last a predefined amount of time (a few hours).
 Discussion should be focused on the discovery of errors, not on fixing

them, nor on proposing alternative design decisions.
 Key people in the meeting should be the designer, who presents and

explains the rationale of the work a moderator for the discussion and aexplains the rationale of the work, a moderator for the discussion, and a
secretary, who is responsible for writing a report to be given to the designer
at the end of the meeting.
I d f i d id h f li h h d i In order to foster cooperation and avoid the feeling that the designers are
being evaluated, managers should not participate in the meeting.

11

8 1 3 Code Inspections8.1.3 Code Inspections

 A code inspection, originally introduced by Fagan (1976) at IBM, is
similar to a walk through but is more formal In Fagan’s experiment threesimilar to a walk-through but is more formal. In Fagan s experiment, three
separate inspections were performed: one following design, but prior to
implementation; one following implementation, but prior to unit testing;

d f ll i it t ti Th i ti f ll i it t tiand one following unit testing. The inspection following unit testing was
not considered to be cost effective in discovering errors; therefore, it is
not recommended.

 The organization aspects of code inspection are similar to those of code
walkthrough (i.e., the number of participants, duration of the meeting,
psychological attitudes of the participants etc should be about thepsychological attitudes of the participants, etc., should be about the
same), but there is a difference in goals.

 In code inspection, the analysis is aimed explicitly at the discovery of
l d I h i i f l b f h dcommonly made errors. In such a case, it is useful to state beforehand

the type of errors for which we are searching. For instance, consider the
classical error of writing a procedure that modifies a formal parameter
and calling the procedure with a constant value as the actual parameter.

12

The following is a list of some classical programming
errors, which can be checked for during code inspection:
 Use of uninitialized variables
 Jumps into loops
 Non-terminating loops
 Incompatible assignments Incompatible assignments
 Array indices out of bounds
 Improper storage allocation and deallocationImproper storage allocation and deallocation
 Mismatches between actual and formal parameters in procedure calls
 Use of incorrect logical operators or incorrect precedence among

operators
 Improper modification of loop variables

Comparison of equality of floating point values etc Comparison of equality of floating-point values, etc.

13

Checklist for Code InspectionsChecklist for Code Inspections

 Inspections or reviews are more formal and conducted with the help of
some kind of checklist The steps in the inspections or reviews are:some kind of checklist. The steps in the inspections or reviews are:
– Is the number of actual parameters and formal parameters in agreement?
– Do the type attributes of actual and formal parameters match?
– Do the dimensional units of actual and formal parameters match?
– Are the number of attributes and ordering of arguments to built-in functions

correct?
– Are constants passed as modifiable arguments?
– Are global variable definitions and usage consistent among modules?

A li ti f h kli t i ll d f th d l t l SRS– Application of a checklist specially prepared for the development plan, SRS,
design and architecture

– Nothing observation: ok, not ok, with comments on mistake or inadequacy
R i kRepair-rework

– Checklists prepared to countercheck whether the subject entity is correct,
consistent, and complete in meeting the objectives

14

8.1.4 Differences Between Walk-throughs and Inspections/
Reviews

 The basic difference between the two is that a walk-through is less formalThe basic difference between the two is that a walk through is less formal
and has only a few steps, whereas inspections and reviews are more
formal and logically sequential with many steps.

 Both processes are undertaken before actual development, and hence
they are conducted on documents, such as a development plan, SOW,
RDD and SRS design document and broad WBS to examine theirRDD and SRS, design document, and broad WBS to examine their
authenticity, completeness, correctness, and accuracy.

 Both are costly but the cost incurred is comparatively much lower thanBoth are costly but the cost incurred is comparatively much lower than
the cost of repair at a much later stage in the development cycle.

 Another difference between a walk-through and an inspection is that theAnother difference between a walk through and an inspection is that the
former is less formal and quick; whereas inspection is more formal, takes
more time, and is far more systematic.

15

8.2 DEBUGGING
8.2.1 Introduction/Definition
 Debugging means identifying, locating, and correcting the bugs usually

by running the program It is an extensively used term in programmingby running the program. It is an extensively used term in programming.
These bugs are usually logical errors.
– During the compilation phase the source files are accessed and if errors are

found, then that file is edited and the corrections are posted in the file. After
the errors have been detected and the corrections have been included in the
source file, the file is recompiled.

– This detection of errors and removal of those errors is called debugging.
– The file is compiled again, so changes done last time get included in the

object file also by itself.object file also by itself.
– This process of compilation, debugging, and correction posting in the source

file continues until all syntactical errors are removed completely.
If i l d l th th h t b– If a program is very large and complex, the more the program has to be
corrected and compiled.

 Successful compilation of the program means that now the program is
following all the rules of the language and is ready to execute. All of the
syntax errors of the program are indicated by the complier at this stage. 16

8 2 2 Debugging Tactics/Categories8.2.2 Debugging Tactics/Categories

 The various categories for debugging are:The various categories for debugging are:
– Brute-force debugging
– BacktrackingBacktracking
– Cause elimination
– Program slicingg g
– Fault-tree analysis

17

The various categories for debugging mentioned above
are discussed as follows:

 Brute-force Debugging. The programmer appends the print or writeBrute force Debugging. The programmer appends the print or write
statement which, when executed, displays the value of a variable. The
programmer may trace the value printed and locate the statement
containing the error Earlier when the time for execution was quite highcontaining the error. Earlier when the time for execution was quite high,
programmers had to use the core dumps. The core dumps are referred to
as the static image of the memory and this may be scanned to identify
the bugthe bug.

 Backtracking. In this technique, the programmer backtracks from
the place or statement which gives the error symptoms for the first timethe place or statement which gives the error symptoms for the first time.
From this place, all the statements are checked for possible cause of
errors. Unfortunately, as the number of source lines increases, the

b f t ti l b k d th b bl lnumber of potential backward paths may become unmanageably large.

18

 Cause Elimination. Cause elimination is manifested by induction or deduction
and introduces the concept of binary partitioning Data related to the errorand introduces the concept of binary partitioning. Data related to the error
occurrence are organized to isolate potential causes. A list of all possible causes is
developed and tests are conducted to eliminate each. If initial tests indicate that a
particular cause hypothesis shows promise the data are refined in an attempt toparticular cause hypothesis shows promise, the data are refined in an attempt to
isolate the bug.

 Program Slicing. This technique is similar to backtracking. However, the search
space is reduced by defining slices. A slice of a program for a particular variable at a
particular statement is the set of source lines preceding this statement that can
influence the value of that variable.

 Fault-tree Analysis. Fault-tree analysis, a method originally developed for the
U.S. Minuteman missile program, helps us to decompose the design and look for
situations that might lead to failure In this sense the name is misleading; we aresituations that might lead to failure. In this sense, the name is misleading; we are
really analyzing failures, not faults, and looking for potential causes of those failures.
We build fault trees that display the logical path from effect to cause. These trees are
then used to support fault correction or tolerance depending on the design strategythen used to support fault correction or tolerance, depending on the design strategy
we have chosen. 19

8 2 3 Debugging Process8.2.3 Debugging Process

 Debugging is not testing but always occurs as a consequence
f t tiof testing.

 Referring to Figure 8.1, the debugging process begins with the g g , gg g p g
execution of a test case. Results are assessed and a lack of
correspondence between expected and actual performance is
encountered.
– In many cases, the lack of corresponding data is a symptom of

an underlying cause as still hiddenan underlying cause as still hidden.
– Debugging attempts to match symptom with cause, thereby

leading to error correction.leading to error correction.

 Debugging will always have one of two outcomes:
Th ill b f d d t d d d– The cause will be found and corrected and removed or

– The cause will not be found. 20

21

8 2 4 Program Debugging8.2.4 Program Debugging

 People think that program testing and debugging are the same thing.
Though closely related they are two distinct processesThough closely related, they are two distinct processes.

– Testing establishes the presence of errors in the program.
– Debugging is the locating of those errors and correcting them. Debugging depends

on the output of testing which tells the programmer about the presence or absence ofon the output of testing which tells the programmer about the presence or absence of
errors.

 There are various debugging stages, as shown in Figure 8.2. The incorrect parts
of the code are located and the program is modified to meet its requirements.
After repairing, the program is tested again to ensure that the errors have been
corrected. Debugging can be viewed as a problem-solving process.

22

 There is no standard method to teach how to debug a
program.
– The debugger must be a skilled person who can easily understand

the errors by viewing the outputthe errors by viewing the output.
– The debugger must have knowledge of common errors, which occur

very often in a program.

 After errors have been discovered, then correct the error. If
the error is a coding error, then that error can be corrected g ,
easily. But, if the error is some design mistake, then it may
require effort and time. Program listings and the hard copy of
the output can be an aid in debugging.

23

8 2 5 Debugging Guidelines8.2.5 Debugging Guidelines

Some general guidelines for effective debugging include:Some general guidelines for effective debugging include:

 Many a times, debugging requires a thorough understanding of the
program designprogram design.

 Debugging may sometimes even require a full redesign of the system.

 One must be aware of the possibility that any error correction may
introduce new errors. Therefore, after every round of error-fixing,
regression testing must be carried out.regression testing must be carried out.

24

8 2 6 Characteristics of Bugs8.2.6 Characteristics of Bugs

Some characteristics of bugs are as follows:Some characteristics of bugs are as follows:
 The symptom and the cause may be geographically remote.
 The symptom may disappear when another error is corrected.
 The symptom may actually be caused by non-errors.
 The symptom may be caused by a human error.
 The symptom may be a result of timing problems.
 It may be difficult to accurately reproduce input conditions.
 The symptom may be intermittent The symptom may be intermittent.
 The symptom may be due to causes that are distributed across a number

of tasks running on different processors.

25

8.3 ERROR, FAULT, AND FAILURE
8.3.1 Errors

 An error is a discrepancy between the actual value of theAn error is a discrepancy between the actual value of the
output given by the software and the specified correct value
of the output for that given input.
– That is, error refers to the difference between the actual output of the

software and the correct output.

 An error is also used to refer to the wrong decision in a given
case as compared to what is expected to be the right one.

 Error also refers to human actions that result in software
containing a defect or faultcontaining a defect or fault.

26

Types of ErrorsTypes of Errors

Errors can be classified into two categories:Errors can be classified into two categories:

 Syntax Error. A syntax error is a program statement that violates
one or more rules of the language in which it is writtenone or more rules of the language in which it is written.

 Logic Error. A logic error deals with incorrect data fields, out-of-
range terms, and invalid combinations.range terms, and invalid combinations.

27

8 3 2 Faults8.3.2 Faults

 A fault is a condition that causes a system to fail in performing
it i d f tiits required function.

 A fault is the basic reason for software malfunction. It is also
commonly called a bug. Even though correct input is given to the
system, when it fails then we say the system has a fault or a bug,
and needs repairand needs repair.

 The number of faults in software is the difference between the
number introduced and the number removednumber introduced and the number removed.

 Faults are introduced when the code is being developed by
Th i t d th f lt d i i i l d ipprogrammers. They may introduce the faults during original design

or when they are adding new features, making design changes, or
repairing faults that have been identified.p g

28

 Faults removal obviously can’t occur unless you have some
means of detecting the fault in the first place.
– Thus, fault removal resulting from execution depends on the

occurrence of the associated failure Occurrence depends both onoccurrence of the associated failure. Occurrence depends both on
the length of time for which the software has been executing and on
the execution environment or operational profile.

 When different functions are executed, different faults are
encountered and the failures that are exhibited tend to be
different;different;
– thus, are environmental influence.

 We can often find faults without execution They may be We can often find faults without execution. They may be
found through inspection, compiler diagnostics, design or
code reviews, or code reading., g

29

8 3 3 Failure8.3.3 Failure

 Failure is the inability of the software to perform a
required function to its specification.

 In other words, when software goes ahead in processingIn other words, when software goes ahead in processing
without showing error or fault even though certain input and
process specification are violated, then it is called a
software failure.
– A software failure occurs when the behavior of software is different

from the required behaviorfrom the required behavior.

 A failure is produced only when there is a fault in the system.
In other words faults have the potential to cause failures andIn other words, faults have the potential to cause failures and
their presence is a necessary but not a sufficient condition
for failure to occur.

30

EXERCISESEXERCISES

1. Explain, in brief, the various static-testing strategies.
2 Gi ti t d f i ti i lk th h d h kli t2. Give a comparative study of inspection, reviews, walk-throughs, and checklists.
3. Define various testing strategies in detail.
4. What is a code walk-through? List the important types of errors checked during a codeg p yp g

walk-through.
5. How can design attributes facilitate debugging?
6 What are the various debugging approaches? Discuss them with the help of6. What are the various debugging approaches? Discuss them with the help of

examples.
7. Define the term “debugging.” Explain the various debugging techniques available.
8. Why is it advantageous to detect as many errors as possible during code review than

during testing?
9. Define a review. Also, explain the different types of reviews., p yp
10.What is a Formal Technical Review (FTR)? What are the objectives of a FTR?
11.What is the role of a formal technical review as a quality-assurance activity? Discuss

the details of the review meeting reporting and record keepingthe details of the review meeting, reporting, and record keeping.
31

12. Enumerate the various steps involved in a inspection/review.
13. What is the difference between a code walk-through and a code

inspection/review?
14. What are the guidelines used for effective debugging?14. What are the guidelines used for effective debugging?
15. Describe the debugging process with the help of a suitable diagram.
16. What is program debugging?
17. Enumerate some of the characteristics shown by bugs.
18. What do you understand by the terms error, fault, and failure?
19. What is the difference between a syntax error and logical error?

32

Tanya Jawab

The End

