
Section 2

Algorithm Complexity



Algorithm Complexity
• This section of the course is aimed at providing a framework for the analysis

of algorithms.
• Constructing such a framework is not a simple task - we need some way to

compare the performance of many very different algorithms. The results we
end up with should be equally applicable to any platform.

• It s not sufficient to simply implement all the algorithms we wish to compare
in Java, run them on a PC, and use a stopwatch to calculate timings. This will
tell us nothing about how the same algorithms might run when written in C++
running on a supercomputer.

• This means our method of analysis must be
– Independent of the hardware the algorithm will be run on. (Is it a PC or a

Supercomputer?)
– Independent of the implementation. (Is it written in Java or Visual Basic?)
– Independent of the type of algorithm input (For a sorting algorithm - are

we sorting numbers or words?)



Algorithm Analysis
• Our framework should allow us to make some predictions about our

algorithms.
• In particular it should allow us to predict how efficiently our

algorithms will scale e.g. given an analysis of a sorting algorithm we
should be able to predict how it will perform given 10, 100 and 1000
items.

• As we shall see later implementation details and hardware speed are
often irrelevant. Our framework will allow us to make design decisions
about the appropriateness of one algorithm as opposed to another.

• Often in computer science there are several useful programming
paradigms suitable for solving a problem e.g. divide and conquer,
backtracking, greedy programming, dynamic programming.

• Proper analysis will allow us to decide which paradigm is most
suitable when designing an algorithm.



Algorithm Analysis
• Definitions:

– Basic Operation:
• The performance of an algorithm depends on the number of basic operations it

performs.

– Worst-Case input:
• Often when analysing algorithms we tend to take a pessimistic approach. The

worst-case input for an algorithm is the input for which the algorithm performs
the most basic operations.

• For example a specific sorting algorithm may perform very well if the input
(the numbers) it is given to sort are already partially sorted. It may  perform
less well if the input is  arranged randomly.

• We generally consider the worst case scenario for every algorithm as this
provides a fair (and as it turn out simpler) basis for comparison.

• Sometimes we will consider the average-case time for an algorithm. This is
often far more difficult to evaluate - it often depends on the nature of the input,
rather than the algorithm. e.g. On average a sorting algorithm may  sort an
English passage of words far faster than its worst-case analysis predicts,
simply because English contains many short words. Sorting passages in
German may result in an average-case time closer to the worst-case.



Basic Operations
• Deciding exactly what a basic operation is can seem a little subjective.
• For general algorithms like sorting, the basic operation is well defined

(in this case the basic operation is comparison).
• A basic operation may be

– An addition , multiplication or other arithmetic operation.
– A simple comparison.
– A complex series of statements that moves a database record from one

part of the database to another.
– A method which calculates the log of a number.

• In fact in general the actual specification of the basic operation is not
that important.

• We need only ensure that its performance is roughly constant for any
given input. e.g. a method which calculates the factorial of a number
would be inappropriate as a basic operation as calculating the factorial
of 5 may be far faster than calculating the factorial of 150.



A simple example
public static void main(String args[])
{

int x,y;
x= 10;
y = Math.Random() % 15;
// y is a random number between 0 and 14
while ((x>0)&&(y>0))
{

x = x-1;
y = y-1;

}
}

• What is the basic operation in this algorithm?
• What is the worst-case for the algorithm?
• What is the average-case for the algorithm?



A simple example
public static void main(String args[])
{

int x,y;
x= 10;
y = Math.Random() % 15;
// y is a random number between 0 and 14
while ((x>0)&&(y>0))
{

x = x-1;
y = y-1;

}
}

• We tend to ignore the time required to do initialisation - this is constant for any
given input.

• The running time of the program obviously depends on how many times the
loop goes round.

• The work done inside the loop forms the basic operation.

Basic Operation

Initialisation



Case Times
• It should be fairly obvious that the worst-case for this algorithm is 10

basic operations. This happens if the value of y is 10 or more. The loop
will always end after 10 iterations.

• Y can take on values between 0 and 14 and the number of basic
operations for each value of y is as follows:

• y : 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
• basic ops : 0  1  2  3  4  5  6  7  8  9 10 10 10 10 10

• Since each value of y is equally likely the average number of iterations
is around 6.33 (95/15).

• This average analysis would change if y was more likely to have
higher values i.e. it depends on the nature or distribution of y. The
worst case analysis will not change.

• Usually we not too concerned with algorithms like this since they have
a constant worst case - this sort of thing only worries computer game
programmers.



Input Size
• More often we are concerned with algorithms that vary according to

input size e.g.
public static void simple(int n)
{

while (n>0)
{

n = n-1;
}

}

• The worst-case for this algorithm is n basic operations. In general our
worst-case analyses will be in terms of the input size.

• This example is somewhat misleading as ‘input size’ is determined by
a single integer. Some better examples more typical input sizes are:

sorting : Input size - number of items to sort
 : Basic Operation : comparison of two items
multiplication : Input size - number of digits in both numbers
 : basic operation - single digit multiplication



Input Size
Database searching : Input size - No. of database records
 : basic operation - checking a record
Maze solving : Input size - No of paths between junctions
 : basic operation - checking for next junction or
      finish.

• Working with basic operations
– We need some rules or operators which allow us to work out how many

basic operations are performed in the worst-case of an algorithm.
– Sequences : The time taken to execute a sequence of basic operations is

simply the sum of the time taken to execute each of the operations.
– T(sequence(b1;b2;b3)) = T(b1)+T(b2)+T(b3) - usually we roll these into a

single basic operation.
– Alternatives : When we have an if statement which will perform one basic

operation or another, we calculate the time as the longest basic operation
– T( if (cond) b1 else b2) = Max(T(b1),T(b2))



Calculating times
– Iteration - when we have a loop the running time depends on the time of

the basic operation and the worst-case number of iterations.
– T(loop) = T(b1) * worst-case number of iterations

• Exercise : Identify the basic operations and input sizes in the following
segments of code. Determine the running time.

• Segment 1-
int n=5;
while(n>0)

n=n-1;

• Segment 2 -
public static void algor(int n)
{
int x=5;

if (n>0)
x=x+5;

else
x=x-5

}



Calculating times
• Segment 3

public static void algor(int n)
{
int x=5;

while (n>0) {
n=n-1;
if (n%2==0)

x=x+5;
else

x=x-5
}

}

• Segment 4
public static void algor(int n)
{
int x=5;
     if (n %2==0)

while (n>0) {
n=n-1;
if (n%2==0)

x=x+5;
else

x=x-5
}

}



Calculating times

• Segment 1-
int n=5;
while(n>0)

n=n-1;
• Basic Operation : n=n-1 - we will call this b1
• Time to execute b1 : T(b1)  - This is just notation
• Worst case number of iterations - loop is performed at most 5 times
• Time = T(b1) * 5
• Input Size : In the above expression all the elements are constant

therefore this piece of code has a constant running time. Input size
would not have any effect on this code.



• Segment 2
public static void algor(int n)
{
int x=5;

if (n>0)
x=x+5;

else
x=x-5;

}

• With an if statement we assume the worst. We know one alternative or
the other must be executed so at worst the running time is the slowest
of the two alternatives. Time = Max(T(b1), T(b2))

• This piece of code has no loop - again the running time just contains
constant elements. Input size has no effect.

Calculating times

Basic operation  - b1

Basic operation  - b2



• Segment 3
public static void algor(int n)
{
int x=5;

while (n>0) {
n=n-1;
if (n%2==0)

x=x+5;
else

x=x-5
}

}

• Working from the inside out - The if statement = Max(T(b2),T(b3)) . This is in sequence with basic
operation b1. The total time to perform the operations inside the loops is T(b1) + Max(T(b2),T(b3))

• The loop depends on the value of n - It will perform at most n iterations
• Time = n * [T(b1) + Max(T(b2),T(b3))]  (we assume  n>=0)
• This equation depends on n - as n gets larger the time increases. The input size is n.

Calculating times

Basic operation - b1

Basic operation - b2
Basic operation - b3



Calculating Times
• Segment 4

public static void algor(int n)
{
int x=5;

if (n%2==0)
while (n>0) {

n=n-1; //basic operation b1
if (n%2==0)

x=x+5; //basic operation b2
else

x=x-5 //basic operation b3
}

}

• As before, time for the loop is Time = n * [T(b1) + Max(T(b2),T(b3))]
• The loop is enclosed inside an if statement. This if statement either gets executed or it doesn’t - this

implies the running time is Max(n * [T(b1) + Max(T(b2),T(b3))], 0)
• Obviously this is equivalent to n * [T(b1) + Max(T(b2),T(b3))]
• This equation depends on n - as n gets larger the time increases. The input size is n.



Input Size
• As mentioned previously we are not concerned with algorithms which

have a constant running time. A constant running time algorithm is the
best kind of algorithm we could hope to use to solve a problem.

• Code segments 1 and 2 both have constant running times. We could
not possibly substitute an alternative algorithm which would be
generally faster. When we reach a situation like this improvements in
speed depends purely on how well a piece of code is implemented - a
purely mundane task.

• Code segments 3 and 4 both had a running time which was
proportional to n. (Some constant times n). With these problems if n
doubles the running time doubles.

• When we attempt to analyse algorithms in a general sense it is the
dependency on input size which is most important.



Input Size Dependency
• The following table illustrates 4 different algorithms and the worst

number of basic operations they perform

• If we assume that each algorithm performs the same basic operations -
and that a typical computer can execute 1 million basic operations a
second then we get the following execution times.

Input
Size

Algorithm
1

Algorithm
2

Algorithm
3

Algorithm
4

1 1 2 4 8
10 1024 200 40 11.32
100 2100 20000 400 14.64
1000 21000 2000000 4000 17.97



• These algorithms have running times proportional to 2n, n2, n and
log2(n) for input size n.

• These figures should illustrate the danger of choosing an ‘optimal’
algorithm by simply implementing several algorithms to solve a
problem and choosing the fastest.

• If we were to choose based on an input size of 1 then we would
probably choose the first one!

Input Size Dependency
Input
Size

Algorithm
1

Algorithm
2

Algorithm
3

Algorithm
4

1 1 µs 2µs 4µs 8µs
10 1.024ms 200µs 40µs 11.32µs
100 275years 20ms 0.4 ms 14.64µs
1000 2975years 2s 4 ms 17.97µs



Big-O Notation
• It should be clear from the previous example that the efficiency of an

algorithm depends primarily on the proportionality of the running time
to the input size.

• This is the framework we have been searching for all along.
• It is independent of implementation details, hardware specifics and

type of input.
• Our task when performing an analysis is to describe how the running

time of a given algorithm is proportional to the algorithms input size.
i.e. we make statements like - “the running time of this algorithm will
quadruple when the input size doubles” or “the running time is 5 times
the log of the input size”.

• Statement like these can be open to different interpretations - since
algorithm analysis is so central to Computer Science a more formal
notation exists. This notation is known as Big-O notation.



Big-O Notation
• Big-O notation - formal definition
• Let f:N->R i.e. f is a mathematical function that maps positive whole

numbers to real numbers. E.g. f(n) = 3.3n => f(2) = 6.6, f(4) = 13.2
• In fact f abstractly represents a timing function - consider it as a

function which returns the running time in seconds for a problem of
input size n.

• Let g:N->R be another of these timing functions
• There exists values c and n0 (where n0 is the smallest allowable input

size) such that
• f(n) <= c*g(n) when n>=n0 or f(n) is O(g(n))
• Less formally - given a problem with input size n (n must be at least as

big as our smallest allowable input size n0) our timing function f(n) is
always less than a constant times some other timing function g(n)

• f(n) represents the timing of the algorithm we are trying to analyse.
• g(n) represents some well known (and often simple) function whose

behaviour is very familiar



Big-O Notation
• What’s going on? How is this useful?
• During algorithm analysis we typically have a collection of well

known functions whose behaviour given a particular input size is well
known.

• We’ve already seen a few of these
– Linear : g(n) = n     - if n doubles running time doubles
– Quadratic : g(n) = n2 - if n doubles running time quadruples
– Logarithmic : g(n) = lg(n) - if n doubles the running time increase by a

constant time
– Exponential : g(n) = 2n - as n increases the running time explodes.

• These functions allow us to classify our algorithms. When we say f(n)
is O(g(n)) we are saying that given at least some input size f will
behave similarly to g(n).

• Essentially this expresses the idea of an algorithm taking at most some
number of basic operations.



Big-O Notation
• Examples:

– 3n is O(n)
– 4n +5 is O(n)
– 4n +2n +1 is O(n)
– 3n is O(n2)
– n*Max[T(b1),T(b2)] is O(n)
– n* ( T(b1) + n*T(b2)) is O(n2)

• The last two examples might represent the running times of two
different algorithms. It is obvious that we would prefer our algorithms
to be O(n) rather than O(n2). This classification using O-notation
allows us to make the appropriate decision and pick the first of the
two.



Analysis Example
• Our task is to decide on an algorithm to find the largest number in an

array of integers.
• We’ll use two different algorithms and analyse both to see which is

computationally more efficient.
• Algorithm 1:
public static int findLargest(int numbers[])
{

int largest;
boolean foundLarger;
foundLarger = true;

// Go through the numbers one by one
for (int i=0; (i < numbers.length) && (foundLarger); i++) 
{

foundLarger = false;
// look for number larger than current one
for (int j=0; j< numbers.length; j++)
{

// This one is larger so numbers[i] can't be the largest
if (numbers[j] > numbers[i])

foundLarger = true;
}
// If we didnt find a larger value then current number must be largest
if (!foundLarger)
   largest = numbers[i];

}
return largest;

}



Algorithm analysis
• In order to analyse the algorithm we must first identify the basic

operations. They appear in bold in the previous slide. We’ll label them
b1..b5

• Usually we tend to ignore the constant times b1 and b5. They’re just
included here for completeness.

• Next we have to identify the input size. The input size is simply the
number of elements in the array (we’ll call this n). In general the input
size is always obvious.

• We have to work out the timing for this algorithm and then use O-
notation to decide how to categorise it.

• Using the rules we’ve seen earlier we get
• Time = T(b1) + n * ( T(b2) + n * Max (T(b3),0) + Max(T(b4),0)) + T(b5)
• If we eliminate the redundant Max functions and multiply this out we get
• Time = n2*T(b3) + n*(T(b2) + T(b4)) + T(b1) + T(b5)



Algorithm Classification
• Using O-notation :

– We must try an classify our Time function (f(n)) in terms of one of the
standard classification functions (g(n)).

– recall the definition of O
• f(n) <= c*g(n) , n >= n0

– Our time function has a n2 term in it so it could not possibly be O(n) i.e.
linear. We could never pick a constant c that would guarantee n2 <= c*n.

– Our time function is O(n2)  - Essentially the function is of the form
– an2 + bn + d, where a, b and d are just arbitrary constants. We can always

choose a sufficiently large value c such that : an2 + bn + d <= c*n2

– In general if the timing function for an algorithm has the form of a
polynomial then we can simply take the highest power in the polynomial
and this will give us our g(n).



Algorithm Analysis
• Now we will analyse a different algorithm which performs the same

task.

• A similar analysis to the previous example gives
• Time =  n*T(b2) + T(b1) +  T(b3)
• The highest power of n is 1 this implies this algorithm is O(n) or linear.
• O(n) is a large improvement on O(n2). This algorithm is much more

efficient.

public static int findLargest(int numbers[])
{

int largest;
largest = numbers[0];
// Go through the numbers one by one
for (int i=1;  i < numbers.length ; i++)
{

// Is the current number larger than the largest so far ?
if (numbers[i] > largest)

largest = numbers[i];
}
return largest;

}



Algorithm Classification
• O-notation is nothing more than a mathematical notation that captures

the idea of the slope of an asymptote.
• Programs with constant running times look like this as input size

varies.

•  The actual position of the line is irrelevant. When we use O-notation
we are implicitly performing the following steps.

– 1. Picture the running time of the algorithm f(n)
– 2. Calculate the asymptote to the graph of this function as n goes to

infinity
– 3. Ignore the position of the asymptote, move it back to the origin an

compare this slope with the slope of standard graphs.

Input Size

Tim
e

f(n)



Algorithm Analysis

• We’ve performed the three implicit steps here. Note that the asymptote
to a line is just the line itself.

• Constant running times all map to the black line in the diagram above.
An infinite running time would map to the y axis. All other algorithms
lie somewhere in between. For  the moment we won’t include the
standard ones.

• Lets examine how our previous two algorithms would perform.
• Before we can actually graph the running time we must first give

values to the time it takes to execute the basic operations. We’ll can
just assume they all take 1 unit of time each. The actual value we pick
is irrelevant. It won’t affect the slope of the asymptote.

Input Size

Tim
e

f(n)

Input Size

Tim
e

asymptote

Constant Time

Infinite Tim
e



Algorithm Analysis
• Algorithm 1 : Time = n2*T(b3) + n*(T(b2) + T(b4)) + T(b1) + T(b5)

– this implies f(n) = n2 + 2n + 2
• Following the three step from before we get

• Similarly for algorithm 2 : Time =  n*T(b2) + T(b1) +  T(b3)
– this implies f(n) = n+2

Input Size

Tim
e

f(n)

Input Size

Tim
e asymptote

Constant Time

Infinite Tim
e

Input Size

Tim
e

f(n)

Input Size

Tim
e

asymptote

Constant Time

Infinite Tim
e



Algorithm Analysis
• Comparing these directly

• It is clear that algorithm 1 is less efficient than algorithm 2.
• The lines for algorithm 1 and algorithm 2 represent the standard lines

for O(n) and O(n2).

Constant Time

Infinite Tim
e

Algorithm 1

Algorithm 2



OM-Notation
• We use OM-notation to describe an algorithm which takes at least

some number of basic operations. It represents a lower bound on the
worst case running time of an algorithm.

• OM notation - formal definition
• Let f:N->R and g:N->R
• There exists values c and n0 such that
• f(n) >= c*g(n) when n>=n0 or f(n) is OM(g(n))
• Less formally - given a problem with input size n (n must be at least as

big as our smallest allowable input size n0) our timing function f(n) is
always at least as large as a constant times some other timing function
g(n).

• OM-notation is often more difficult to work out than O-Notation.
• Examples :

– 10n is OM(n)
– 10n +2n2 is OM(n2)



THETA-notation
• Again let f:N->R and g:N->R
•  If f(n) is O(g(n)) and f(n) is OM(g(n)) then we can say
• f(n) is THETA(g(n))
• f(n) is said to be asymptotically equivalent to g(n)
• Really what this says is that algorithms f(n) and g(n) behave similarly

as n grow larger and larger.
• If we find a specific algorithm is THETA(g(n)) then this is an

indication that we cannot improve on the design of this algorithm. Its
an indication that it is time to hand the algorithm over to some data
monkey to let them improve the implementation.

• This does not mean that we couldn’t replace the algorithm with a better
one. It just means that this specific algorithm is as well designed as it
could be.



Notation Rules
• f(n) is O(g(n)) if and only if g(n) is OM(f(n))
• If f(n) is O(g(n)) then

– f(n) + g(n) is O(g(n))
– f(n) + g(n) is OM(g(n))
– f(n) * g(n) is O(g(n)2)
– f(n) * g(n) is OM(f(n)2)

• Examples : let f(n) = 2n g(n)= 4n2

– f(n) is O(g(n))
– 2n + 4n2 is O(n2)
– 2n + 4n2 is OM(n2)
– 2n * 4n2 is O(n4)
– 2n * 4n2 is OM(n4)


