
John von Neumann Institute for Computing

Ab initio molecular dynamics: Theory and
Implementation

Dominik Marx and Jürg Hutter

published in

Modern Methods and Algorithms of Quantum Chemistry,
J. Grotendorst (Ed.), John von Neumann Institute for Computing,
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The rapidly growing �eld of ab initio molecular dynamics is reviewed in the spirit
of a series of lectures given at the Win terschool 2000 at the John von Neumann
Institute for Computing, J•ulich . Several such molecular dynamics schemes are
compared which arise from follo wing various approximatio ns to the fully coupled
Schr•odinger equation for electrons and nuclei. Special focus is given to the Car{
Parrinello metho d with discussion of both strengths and weaknessesin addition
to its range of applicabilit y. To shed ligh t upon why the Car{P arrinello approach
works several alternate perspectiv es of the underlying ideas are presented. The
implementation of ab initio molecular dynamics within the framework of plane
wave{pseudop otent ial density functional theory is given in detail, including diag-
onalization and minimization techniques as required for the Born{Opp enheimer
varian t. E�cien t algorithms for the most imp ortan t computational kernel routines
are presented. The adaptation of these routines to distributed memory parallel
computers is discussed using the implementation within the computer code CPMD
as an example. Several advanced techniques from the �eld of molecular dynam-
ics, (constan t temp erature dynamics, constant pressure dynamics) and electronic
structure theory (free energy functional, excited states) are intro duced. The com-
bination of the path integral metho d with ab initio molecular dynamics is presented
in detail, showing its limitations and possible extensions. Finally , a wide range of
applications from materials scienceto biochemistry is listed, which shows the enor-
mous potential of ab initio molecular dynamics for both explaining and predicting
prop erties of molecules and materials on an atomic scale.

1 Setting the Stage: Wh y A b Initio Molecular Dynamics ?

Classical molecular dynamics using \prede�ned potentials", either based on em-
pirical data or on independent electronic structure calculations, is well estab-
lished as a powerful tool to investigate many{b ody condensedmatter systems.
The broadness, diversity, and level of sophistication of this technique is docu-
mented in several monographsas well as proceedingsof conferencesand scienti�c
schools 12;135;270;217;69;59;177. At the very heart of any molecular dynamics scheme
is the question of how to describe { that is in practice how to approximate { the
interatomic interactions. The traditional route followedin moleculardynamics is to
determine thesepotentials in advance. Typically, the full interaction is broken up
into two{body, three{body and many{b ody contributions, long{range and short{
range terms etc., which have to be represented by suitable functional forms, see
Sect. 2 of Ref. 253 for a detailed account. After decadesof intense research, very
elaborate interaction models including the non{trivial aspect to represent them
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analytically were devised253;539;584.
Despite overwhelming success{ which will however not be praised in this re-

view { the needto devisea \�xed model potential" implies seriousdrawbacks, see
the introduction sectionsof several earlier reviews 513;472 for a more complete di-
gressionon these aspects. Among the most delicate ones are systems where (i)
many di�eren t atom or moleculetypesgive rise to a myriad of di�eren t interatomic
interactions that have to be parameterized and / or (ii) the electronic structure
and thus the bonding pattern changesqualitativ ely in the courseof the simulation.
Thesesystemscan be called \chemically complex".

The reign of traditional molecular dynamics and electronic structure methods
was greatly extended by the family of techniques that is called here \ ab initio
molecular dynamics". Other namesthat are currently in useare for instance Car{
Parrinello, Hellmann{Feynman, �rst principles, quantum chemical, on{the{y , di-
rect, potential{free, quantum, etc. molecular dynamics. The basic idea underlying
every ab initio molecular dynamics method is to compute the forcesacting on the
nuclei from electronic structure calculations that are performed\on{the{y" as the
moleculardynamics tra jectory is generated. In this way, the electronicvariablesare
not integrated out beforehand,but areconsideredasactivedegreesof freedom. This
implies that, given a suitable approximate solution of the many{electron problem,
also \chemically complex" systemscan be handled by molecular dynamics. But
this also implies that the approximation is shifted from the level of selecting the
model potential to the level of selectinga particular approximation for solving the
Schr•odinger equation.

Applications of ab initio molecular dynamicsare particularly widespreadin ma-
terials scienceand chemistry, where the aforementioned di�culties (i) and (ii) are
particularly severe. A collection of problems that werealready tackled by ab initio
molecular dynamics including the pertinent referencescan be found in Sect.5. The
power of this novel technique leadto an explosionof the activit y in this �eld in terms
of the number of published papers. The locus can be located in the late{eighties,
seethe squaresin Fig. 1 that can be interpreted as a measureof the activit y in
the areaof ab initio molecular dynamics. As a matter of fact the time evolution of
the number of citations of a particular paper, the one by Car and Parrinello from
1985entitled \Uni�ed Approach for Molecular Dynamics and Density{F unctional
Theory" 108, parallels the trend in the entire �eld, seethe circles in Fig. 1. Thus,
the resonancethat the Car and Parrinello paper evoked and the popularit y of the
entire �eld go hand in hand in the last decade.Incidentally , the 1985paper by Car
and Parrinello is the last one included in the section \T rends and Prospects" in
the reprint collection of \k ey papers" from the �eld of atomistic computer simula-
tions 135. That the entire �eld of ab initio molecular dynamics has grown mature
is also evidencedby a separatePACS classi�cation number (71.15.Pd \Electronic
Structure: Molecular dynamics calculations (Car{P arrinello) and other numerical
simulations") that was introduced in 1996into the Physics and Astronomy Classi-
�c ation Scheme486.

Despite its obvious advantages, it is evident that a price has to be payed for
putting molecular dynamics on ab initio grounds: the correlation lengths and re-
laxation times that are accessibleare much smaller than what is a�ordable via
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Figure 1. Publication and citation analysis. Squares: number of publication s which appeared
up to the year n that contain the keyword \ ab initio molecular dynamics" (or synonyma such
as \�rst principles MD", \Car{P arrinello simulations" etc.) in title, abstract or keyword list.
Circles: number of publication s which appeared up to the year n that cite the 1985 paper by
Car and Parrinello 108 (including misspellings of the bibliographi c reference). Self{citatio ns and
self{pap ers are excluded, i.e. citations of Ref. 108 in their own papers and papers coauthored by
R. Car and / or M. Parrinello are not considered in the respectiv estatistics. The analysis is based
on the CAPLUS (\Chemical Abstracts Plus"), INSPEC (\Ph ysics Abstracts"), and SCI (\Science
Citation Index") data basesat STN In ternation al. Updated statistics from Ref. 405 .

standard molecular dynamics. Another appealing feature of standard molecular
dynamics is lessevident, namely the \exp erimental aspect of playing with the po-
tential". Thus, tracing back the properties of a given system to a simple physical
picture or mechanism is much harder in ab initio molecular dynamics. The bright
side is that new phenomena,which werenot forseenbeforestarting the simulation,
can simply happen if necessary. This gives ab initio molecular dynamics a truly
predictive power.

Ab initio molecular dynamics can also be viewed from another corner, namely
from the �eld of classical tra jectory calculations 649;541. In this approach, which
has its origin in gas phasemolecular dynamics, a global potential energy surface
is constructed in a �rst step either empirically or based on electronic structure
calculations. In a secondstep, the dynamical evolution of the nuclei is generated
by using classicalmechanics, quantum mechanics or semi / quasiclassicalapprox-
imations of various sorts. In the caseof using classicalmechanics to describe the
dynamics { the focusof the present overview { the limiting step for large systemsis
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the �rst one, why so? There are 3N � 6 internal degreesof freedomthat span the
global potential energysurfaceof an unconstrainedN {b ody system. Using for sim-
plicit y 10 discretization points per coordinate implies that of the order of 103N � 6

electronic structure calculations are neededin order to map such a global potential
energysurface. Thus, the computational workload for the �rst step grows roughly
like � 10N with increasingsystem size. This is what might be called the \dimen-
sionality bottleneck" of calculations that rely on global potential energy surfaces,
seefor instance the discussionon p. 420 in Ref. 254.

What is neededin ab initio molecular dynamics instead? Supposethat a useful
tra jectory consists of about 10M molecular dynamics steps, i.e. 10M electronic
structure calculations are neededto generate one tra jectory. Furthermore, it is
assumedthat 10n independent tra jectories are necessaryin order to averageover
di�eren t initial conditions so that 10M + n ab initio molecular dynamics steps are
required in total. Finally , it is assumedthat each single{point electronic structure
calculation neededto devise the global potential energy surfaceand one ab initio
moleculardynamicstime steprequiresroughly the sameamount of cpu time. Based
on this truly simplistic order of magnitude estimate, the advantage of ab initio
moleculardynamicsvs. calculationsrelying on the computation of a global potential
energysurfaceamounts to about 103N � 6� M � n . The crucial point is that for a given
statistical accuracy (that is for M and n �xed and independent on N ) and for a
given electronic structure method, the computational advantage of \on{the{y"
approachesgrows like � 10N with systemsize.

Of course,considerableprogresshasbeenachieved in tra jectory calculations by
carefully selectingthe discretization points and reducing their number, choosingso-
phisticated representations and internal coordinates, exploiting symmetry etc. but
basically the scaling � 10N with the number of nuclei remains a problem. Other
strategiesconsist for instance in reducing the number of active degreesof freedom
by constraining certain internal coordinates, representing lessimportant onesby a
(harmonic) bath or friction, or building up the global potential energy surface in
terms of few{body fragments. All these approaches, however, invoke approxima-
tions beyond the onesof the electronic structure method itself. Finally , it is evident
that the computational advantageof the \on{the{y" approachesdiminish asmore
and more tra jectories are neededfor a given (small) system. For instanceextensive
averaging over many di�eren t initial conditions is required in order to calculate
quantitativ ely scattering or reactive crosssections. Summarizing this discussion,
it can be concludedthat ab initio molecular dynamics is the method of choice to
investigate large and \chemically complex" systems.

Quite a few review articles dealing with ab initio molecular dynamicsappeared
in the nineties 513;223;472;457;224;158;643;234;463;538;405 and the interested reader is re-
ferred to them for various complementary viewpoints. In the present overview
article, emphasisis put on both broadnessof the approachesand depth of the pre-
sentation. Concerning the broadness,the discussionstarts from the Schr•odinger
equation. Classical, Ehrenfest, Born{Opp enheimer, and Car{P arrinello molecular
dynamics are \deriv ed" from the time{dependent mean{�eld approach that is ob-
tained after separating the nuclear and electronic degreesof freedom. The most
extensive discussionis related to the featuresof the basic Car{P arrinello approach
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but all three ab initio approachesto molecular dynamics are contrasted and partly
compared. The important issueof how to obtain the correct forcesin theseschemes
is discussedin somedepth. The most popular electronic structure theories imple-
mented within ab initio molecular dynamics, density functional theory in the �rst
place but also the Hartree{Fock approach, are sketched. Some attention is also
given to another important ingredient in ab initio molecular dynamics, the choice
of the basisset.

Concerning the depth, the focus of the present discussion is clearly the im-
plementation of both the basic Car{P arrinello and Born{Opp enheimer molecular
dynamics schemes in the CPMDpackage 142. The electronic structure approach
in CPMDis Hohenberg{Kohn{Sham density functional theory within a plane wave
/ pseudopotential implementation and the GeneralizedGradient Approximation.
The formulae for energies,forces, stress, pseudopotentials, boundary conditions,
optimization procedures,parallelization etc. are given for this particular choice to
solve the electronic structure problem. One should, however, keep in mind that
a variety of other powerful ab initio molecular dynamics codes are available (for
instance CASTEP116, CP-PAW143, fhi98md 189, NWChem446, VASP663) which are
partly basedon very similar techniques. The classicCar{P arrinello approach 108

is then extended to other ensembles than the microcanonical one, other electronic
states than the ground state, and to a fully quantum{mechanical representation of
the nuclei. Finally , the wealth of problems that can be addressedusing ab initio
molecular dynamics is briey sketched at the end, which also serves implicitly as
the \Summary and Conclusions" section.

2 Basic Techniques: Theory

2.1 Deriving Classical Molecular Dynamics

The starting point of the following discussionis non{relativistic quantum mechanics
as formalized via the time{dependent Schr•odinger equation

i
� @

@t
�( f r i g; f R I g; t) = H�( f r i g; f R I g; t) (1)

in its position representation in conjunction with the standard Hamiltonian
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X
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2M I
r 2

I + H e(f r i g; f R I g) (2)

for the electronic f r i g and nuclear f R I g degreesof freedom. The more convenient
atomic units (a.u.) will be introduced at a later stage for reasonsthat will soon
becomeclear. Thus, only the bareelectron{electron, electron{nuclear, and nuclear{
nuclear Coulomb interactions are taken into account.
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The goal of this section is to derive classical molecular dynamics 12;270;217

starting from Schr•odinger's wave equation and following the elegant route of
Tully 650;651. To this end, the nuclear and electronic contributions to the total
wavefunction �( f r i g; f R I g; t), which depends on both the nuclear and electronic
coordinates, haveto be separated.The simplest possibleform is a product ansatz

�( f r i g; f R I g; t) � 	( f r i g; t) � (f R I g; t) exp
�

i
�

Z t

t 0

dt0~Ee(t0)
�

; (3)

where the nuclear and electronic wavefunctions are separatelynormalized to unit y
at every instant of time, i.e. h� ; t j� ; t i = 1 and h	; t j	; t i = 1, respectively. In
addition, a convenient phasefactor

~Ee =
Z

dr dR 	 ?(f r i g; t) � ?(f R I g; t) H e 	( f r i g; t) � (f R I g; t) (4)

was introduced at this stage such that the �nal equations will look nice;
R

dr dR
refers to the integration over all i = 1; : : : and I = 1; : : : variables f r i g and f R I g,
respectively. It is mentioned in passing that this approximation is called a one{
determinant or single{con�guration ansatz for the total wavefunction, which at the
end must lead to a mean{�eld description of the coupleddynamics. Note also that
this product ansatz(excluding the phasefactor) di�ers from the Born{Opp enheimer
ansatz 340;350 for separating the fast and slow variables

� BO (f r i g; f R I g; t) =
1X

k =0

~	 k (f r i g; f R I g) ~� k (f R I g; t) (5)

even in its one{determinant limit, whereonly a singleelectronic state k (evaluated
for the nuclear con�guration f R I g) is included in the expansion.

Inserting the separationansatzEq. (3) into Eqs.(1){(2) yields (after multiplying
from the left by h	 j and h� j and imposing energy conservation dhHi =dt � 0) the
following relations

i
� @	

@t
= �

X

i

� 2

2me
r 2

i 	 +
� Z

dR � ?(f R I g; t)Vn� e(f r i g; f R I g)� (f R I g; t)
�

	 (6)

i
� @�

@t
= �

X

I

� 2

2M I
r 2

I � +
� Z

dr 	 ?(f r i g; t)H e(f r i g; f R I g)	( f r i g; t)
�

� : (7)

This setof coupledequationsde�nes the basisof the time{dependent self{consistent
�eld (TDSCF) method introduced as early as 1930by Dirac 162, seealso Ref. 158.
Both electronsand nuclei move quantum{mechanically in time{dependent e�ectiv e
potentials (or self{consistently obtained average�elds) obtained from appropriate
averages(quantum mechanical expectation values h: : : i ) over the other class of
degreesof freedom(by using the nuclearand electronicwavefunctions,respectively).
Thus, the single{determinant ansatz Eq. (3) produces, as already anticipated, a
mean{�eld description of the coupled nuclear{electronic quantum dynamics. This
is the price to pay for the simplest possible separation of electronic and nuclear
variables.
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The next step in the derivation of classicalmolecular dynamics is the task to
approximate the nuclei asclassicalpoint particles. How can this be achieved in the
framework of the TDSCF approach, given one quantum{mechanical wave equa-
tion describing all nuclei? A well{known route to extract classicalmechanics from
quantum mechanicsin generalstarts with rewriting the corresponding wavefunction

� (f R I g; t) = A(f R I g; t) exp[iS(f R I g; t)=
�

] (8)

in terms of an amplitude factor A and a phaseS which are both consideredto be
real and A > 0 in this polar representation, seefor instanceRefs. 163;425;535. After
transforming the nuclear wavefunction in Eq. (7) accordingly and after separating
the real and imaginary parts, the TDSCF equation for the nuclei

@S
@t

+
X

I

1
2M I

(r I S)2 +
Z

dr 	 ?H e	 =
� 2

X

I

1
2M I

r 2
I A
A

(9)

@A
@t

+
X

I

1
M I

(r I A) (r I S) +
X

I

1
2M I

A
�
r 2

I S
�

= 0 (10)

is (exactly) re{expressedin terms of the new variables A and S. This so{called
\quantum uid dynamical representation" Eqs. (9){(10) can actually be used to
solve the time{dependent Schr•odinger equation 160. The relation for A, Eq. (10),
can be rewritten as a contin uit y equation 163;425;535 with the help of the identi-
�cation of the nuclear density j� j2 � A2 as directly obtained from the de�nition
Eq. (8). This contin uit y equation is independent of

�

and ensureslocally the con-
servation of the particle probabilit y j� j2 associated to the nuclei in the presenceof
a ux.

More important for the present purpose is a more detailed discussionof the
relation for S, Eq. (9). This equation contains one term that depends on

�

, a
contribution that vanishesif the classicallimit

@S
@t

+
X

I

1
2M I

(r I S)2 +
Z

dr 	 ?H e	 = 0 (11)

is taken as
�

! 0; an expansion in terms of
�

would lead to a hierarchy of semi-
classicalmethods 425;259. The resulting equation is now isomorphic to equationsof
motion in the Hamilton{Jacobi formulation 244;540

@S
@t

+ H (f R I g; fr I Sg) = 0 (12)

of classicalmechanics with the classicalHamilton function

H(f R I g; f P I g) = T(f P I g) + V(f R I g) (13)

de�ned in terms of (generalized) coordinates f R I g and their conjugate momenta
f P I g. With the help of the connecting transformation

P I � r I S (14)
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the Newtonian equation of motion _P I = �r I V(f R I g) corresponding to Eq. (11)

dP I

dt
= �r I

Z
dr 	 ?H e	 or

M I •R I (t) = �r I

Z
dr 	 ?H e	 (15)

= �r I V E
e (f R I (t)g) (16)

can be read o�. Thus, the nuclei move according to classical mechanics in an
e�ectiv e potential V E

e due to the electrons. This potential is a function of only the
nuclear positions at time t as a result of averaging H e over the electronic degrees
of freedom,i.e. computing its quantum expectation value h	 jH ej	 i , while keeping
the nuclear positions �xed at their instantaneousvaluesf R I (t)g.

However, the nuclear wavefunction still occurs in the TDSCF equation for the
electronicdegreesof freedomand hasto be replacedby the positionsof the nuclei for
consistency. In this casethe classicalreduction can be achieved simply by replacing
the nuclear density j� (f R I g; t)j2 in Eq. (6) in the limit

�

! 0 by a product of delta
functions

Q
I � (R I � R I (t)) centered at the instantaneouspositions f R I (t)g of the

classicalnuclei as given by Eq. (15). This yields e.g. for the position operator
Z

dR � ?(f R I g; t) R I � (f R I g; t)
�

! 0� ! R I (t) (17)

the required expectation value. This classicallimit leadsto a time{dependent wave
equation for the electrons

i
� @	

@t
= �

X

i

� 2

2me
r 2

i 	 + Vn� e(f r i g; f R I (t)g)	

= H e(f r i g; f R I (t)g) 	( f r i g; f R I g; t) (18)

which evolve self{consistently as the classicalnuclei are propagated via Eq. (15).
Note that now H e and thus 	 depend parametrically on the classicalnuclear posi-
tions f R I (t)g at time t through Vn� e(f r i g; f R I (t)g). This means that feedback
between the classical and quantum degreesof freedom is incorporated in both
directions (at variance with the \classical path" or Mott non{SCF approach to
dynamics 650;651).

The approach relying on solving Eq. (15) together with Eq. (18) is sometimes
called \Ehrenfest molecular dynamics" in honor of Ehrenfest who was the �rst to
addressthe question a of how Newtonian classicaldynamics can be derived from
Schr•odinger's wave equation 174. In the present case this leads to a hybrid or
mixed approach becauseonly the nuclei are forced to behave like classicalparticles,
whereasthe electronsare still treated as quantum objects.

Although the TDSCF approach underlying Ehrenfest molecular dynamics
clearly is a mean{�eld theory, transitions between electronic states are included

a The opening statement of Ehrenfest's famous 1927 paper 174 reads:
\Es ist w•unschenswert, die folgende Frage m•oglichst elementar beantworten zu k•onnen: Welcher
R•uckblick ergibt sich vom Standpunkt der Quantenmechanik auf die Newtonschen Grundgleichun-
gen der klassischen Mechanik?"
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in this scheme. This can be made evident by expanding the electronic wavefunc-
tion 	 (as opposedto the total wavefunction � according to Eq. (5)) in terms of
many electronic states or determinants 	 k

	( f r i g; f R I g; t) =
1X

k =0

ck (t)	 k (f r i g; f R I g) (19)

with complex coe�cien ts f ck (t)g. In this case, the coe�cien ts fj ck (t)j2g (withP
k jck (t)j2 � 1) describe explicitly the time evolution of the populations (occupa-

tions) of the di�eren t statesf kg whereasinterferencesare included via the f c?
k cl 6= k g

contributions. Onepossiblechoicefor the basisfunctions f 	 k g is the adiabatic basis
obtained from solving the time{indep endent electronic Schr•odinger equation

H e(f r i g; f R I g)	 k = Ek (f R I g)	 k (f r i g; f R I g) ; (20)

wheref R I g are the instantaneousnuclear positions at time t accordingto Eq. (15).
The actual equations of motion in terms of the expansion coe�cien ts f ck g are
presented in Sect. 2.2.

At this stage a further simpli�cation can be invoked by restricting the total
electronic wave function 	 to be the ground state wave function 	 0 of H e at each
instant of time according to Eq. (20) and jc0(t)j2 � 1 in Eq. (19). This should be a
good approximation if the energydi�erence between	 0 and the �rst excited state
	 1 is everywhere large comparedto the thermal energykB T, roughly speaking. In
this limit the nuclei move accordingto Eq. (15) on a singlepotential energysurface

V E
e =

Z
dr 	 ?

0H e	 0 � E0(f R I g) (21)

that canbe computed by solving the time{independentelectronicSchr•odingerequa-
tion Eq. (20)

H e	 0 = E0	 0 ; (22)

for the ground state only. This leads to the identi�cation V E
e � E0 via Eq. (21),

i.e. in this limit the Ehrenfest potential is identical to the ground{state Born{
Oppenheimerpotential.

As a consequenceof this observation, it is conceivable to decouplethe task of
generating the nuclear dynamics from the task of computing the potential energy
surface. In a �rst step E0 is computed for many nuclear con�gurations by solving
Eq. (22). In a secondstep, thesedata points are �tted to an analytical functional
form to yield a global potential energysurface539, from which the gradients can be
obtained analytically . In a third step, the Newtonian equation of motion Eq. (16)
is solved on this surfacefor many di�eren t initial conditions, producing a \swarm"
of classicaltra jectories. This is, in a nutshell, the basisof classical trajectory cal-
culations on global potential energysurfaces649;541.

As already alluded to in the generalintroduction, such approachessu�er severely
from the \dimensionalit y bottleneck" as the number of active nuclear degreesof
freedom increases.One traditional way out of this dilemma is to approximate the
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global potential energysurface

V E
e � V appro x

e (f R I g) =
NX

I =1

v1(R I ) +
NX

I <J

v2(R I ; R J )

+
NX

I <J <K

v3(R I ; R J ; R K ) + � � � (23)

in terms of a truncated expansionof many{b ody contributions 253;12;270. At this
stage,the electronic degreesof freedomare replacedby interaction potentials f vn g
and arenot featured asexplicit degreesof freedomin the equationsof motion. Thus,
the mixed quantum / classicalproblem is reduced to purely classicalmechanics,
oncethe f vn g are determined. Classical molecular dynamics

M I •R I (t) = �r I V appro x
e (f R I (t)g) (24)

relies crucially on this idea, where typically only two{body v2 or three{body v3

interactions are taken into account 12;270, although more sophisticated models to
include non{additiv e interactions such as polarization exist. This amounts to a
dramatic simpli�cation and removes the dimensionality bottleneck as the global
potential surfaceis constructed from a manageablesum of additiv e few{body con-
tributions | at the price of introducing a drastic approximation and of basically
excluding chemical transformations from the realm of simulations.

As a result of this derivation, the essential assumptions underlying classical
moleculardynamicsbecometransparent: the electronsfollow adiabatically the clas-
sical nuclear motion and can be integrated out so that the nuclei evolve on a single
Born{Opp enheimerpotential energysurface(t ypically but not necessarilygiven by
the electronicground state), which is in generalapproximated in terms of few{body
interactions.

Actually , classical molecular dynamics for many{b ody systems is only made
possibleby somehow decomposingthe global potential energy. In order to illustrate
this point considerthe simulation of N = 500 Argon atoms in the liquid phase175

where the interactions can faithfully be described by additiv e two{body terms,
i.e. V appro x

e (f R I g) �
P N

I <J v2(jR I � R J j). Thus, the determination of the pair
potential v2 from ab initio electronic structure calculations amounts to computing
and �tting a one{dimensional function. The corresponding task to determine a
global potential energysurfaceamounts to doing that in about 101500 dimensions,
which is simply impossible(and on top of that not necessaryfor Nobel gases!).

2.2 EhrenfestMolecular Dynamics

A way out of the dimensionality bottleneck other than to approximate the global
potential energysurfaceEq. (23) or to reducethe number of active degreesof free-
dom is to take seriouslythe classicalnuclei approximation to the TDSCF equations,
Eq. (15) and (18). This amounts to computing the Ehrenfest forceby actually solv-
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ing numerically

M I •R I (t) = �r I

Z
dr 	 ?H e	

= �r I h	 jH ej 	 i (25)

= �r I hHei

= �r I V E
e

i
� @	

@t
=

"

�
X

i

� 2

2me
r 2

i + Vn� e(f r i g; f R I (t)g)

#

	

= H e	 (26)

the coupled set of equations simultaneously. Thereby, the a priori construction
of any type of potential energy surface is avoided from the outset by solving the
time{dependent electronic Schr•odinger equation \on{the{y". This allows one to
compute the force from r I hHei for each con�guration f R I (t)g generatedby molec-
ular dynamics;seeSect.2.5 for the issueof using the so{called \Hellmann{F eynman
forces" instead.

The corresponding equationsof motion in terms of the adiabatic basisEq. (20)
and the time{dependent expansioncoe�cien ts Eq. (19) read 650;651

M I •R I (t) = �
X

k

jck (t)j2r I Ek �
X

k ;l

c?
k cl (Ek � E l ) dk l

I (27)

i
�

_ck (t) = ck (t)Ek � i
�

X

I ;l

cl (t) _R I dk l
I ; (28)

where the coupling terms are given by

dk l
I (f R I (t)g) =

Z
dr 	 ?

k r I 	 l (29)

with the property d k k
I � 0. The Ehrenfest approach is thus seento include rigor-

ously non{adiabatic transitions betweendi�eren t electronicstates	 k and 	 l within
the framework of classicalnuclear motion and the mean{�eld (TDSCF) approxi-
mation to the electronic structure, seee.g. Refs. 650;651 for reviewsand for instance
Ref. 532 for an implementation in terms of time{dependent density functional the-
ory.

The restriction to one electronic state in the expansion Eq. (19), which is in
most casesthe ground state 	 0, leadsto

M I •R I (t) = �r I h	 0 jH ej 	 0 i (30)

i
� @	 0

@t
= H e	 0 (31)

as a special caseof Eqs. (25){(26); note that H e is time{dependent via the nuclear
coordinates f R I (t)g. A point worth mentioning here is that the propagation of the
wavefunction is unitary , i.e. the wavefunction preserves its norm and the set of
orbitals usedto build up the wavefunction will stay orthonormal, seeSect. 2.6.
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Ehrenfest molecular dynamics is certainly the oldest approach to \on{the{y"
molecular dynamics and is typically used for collision{ and scattering{t ype prob-
lems 154;649;426;532. However, it was never in widespreadusefor systemswith many
active degreesof freedom typical for condensedmatter problems for reasonsthat
will be outlined in Sec.2.6 (although a few exceptionsexist 553;34;203;617 but here
the number of explicitly treated electrons is fairly limited with the exception of
Ref. 617).

2.3 Born{Oppenheimer Molecular Dynamics

An alternativ e approach to include the electronic structure in molecular dynamics
simulations consistsin straightforwardly solving the static electronicstructure prob-
lem in each molecular dynamicsstep given the set of �xed nuclear positions at that
instance of time. Thus, the electronic structure part is reduced to solving a time{
independent quantum problem, e.g. by solving the time{indep endent Schr•odinger
equation, concurrently to propagating the nuclei via classicalmolecular dynamics.
Thus, the time{dependenceof the electronic structure is a consequenceof nuclear
motion, and not intrinsic as in Ehrenfest molecular dynamics. The resulting Born{
Oppenheimermolecular dynamics method is de�ned by

M I •R I (t) = �r I min
	 0

fh	 0 jH ej 	 0 ig (32)

E0	 0 = H e	 0 (33)

for the electronic ground state. A deep di�erence with respect to Ehrenfest dy-
namics concerning the nuclear equation of motion is that the minimum of hHei
has to be reached in each Born{Opp enheimer molecular dynamics step according
to Eq. (32). In Ehrenfest dynamics, on the other hand, a wavefunction that min-
imized hHei initially will also stay in its respective minimum as the nuclei move
according to Eq. (30)!

A natural and straightforward extension281 of ground{state Born{Opp enheimer
dynamics is to apply the samescheme to any excited electronic state 	 k without
considering any interferences. In particular, this means that also the \diagonal
correction terms" 340

D k k
I (f R I (t)g) = �

Z
dr 	 ?

k r 2
I 	 k (34)

are always neglected; the inclusion of such terms is discussedfor instance in
Refs. 650;651. These terms renormalize the Born{Opp enheimer or \clamp ed nu-
clei" potential energy surface Ek of a given state 	 k (which might also be the
ground state 	 0) and lead to the so{called \adiabatic potential energy surface"
of that state 340. Whence, Born{Opp enheimermolecular dynamics should not be
called \adiabatic molecular dynamics", as is sometimedone.

It is useful for the sake of later referenceto formulate the Born{Opp enheimer
equationsof motion for the special caseof e�ectiv e one{particle Hamiltonians. This
might be the Hartree{Fock approximation de�ned to be the variational minimum
of the energyexpectation value h	 0 jH ej 	 0 i givena singleSlater determinant 	 0 =
detf  i g subject to the constraint that the one{particle orbitals  i are orthonormal
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h i j j i = � ij . The corresponding constraint minimization of the total energywith
respect to the orbitals

min
f  i g

fh	 0 jH ej 	 0 ig
�
�
�
�
fh  i j  j i = � ij g

(35)

can be cast into Lagrange'sformalism

L = � h	 0 jH ej 	 0 i +
X

i;j

� ij (h i j j i � � ij ) (36)

where � ij are the associated Lagrangian multipliers. Unconstrained variation of
this Lagrangian with respect to the orbitals

� L
�  ?

i

!= 0 (37)

leadsto the well{known Hartree{Fock equations

HHF
e  i =

X

j

� ij  j (38)

asderived in standard text books 604;418; the diagonalcanonicalform H HF
e  i = � i  i

is obtained after a unitary transformation and H HF
e denotes the e�ectiv e one{

particle Hamiltonian, see Sect. 2.7 for more details. The equations of motion
corresponding to Eqs. (32){(33) read

M I •R I (t) = �r I min
f  i g

� 

	 0

�
�HHF

e

�
� 	 0

�	
(39)

0 = �H HF
e  i +

X

j

� ij  j (40)

for the Hartree{Fock case. A similar set of equations is obtained if Hohenberg{
Kohn{Sham density functional theory 458;168 is used,whereH HF

e hasto be replaced
by the Kohn{Sham e�ectiv e one{particle Hamiltonian H KS

e , seeSect. 2.7 for more
details. Instead of diagonalizing the one{particle Hamiltonian an alternativ e but
equivalent approach consists in directly performing the constraint minimization
according to Eq. (35) via nonlinear optimization techniques.

Early applications of Born{Opp enheimer molecular dynamics were performed
in the framework of a semiempiricalapproximation to the electronicstructure prob-
lem 669;671. But only a few yearslater an abinitio approach wasimplemented within
the Hartree{Fock approximation 365. Born{Opp enheimerdynamics started to be-
comepopular in the early nineties with the availabilit y of more e�cien t electronic
structure codes in conjunction with su�cien t computer power to solve \in teresting
problems", seefor instance the compilation of such studies in Table 1 in a recent
overview article 82.

Undoubtedly, the breakthrough of Hohenberg{Kohn{Sham density functional
theory in the realm of chemistry { which took place around the sametime { also
helped a lot by greatly improving the \price / performanceratio" of the electronic
structure part, seee.g. Refs. 694;590. A third and possibly the crucial reasonthat
boostedthe �eld of ab initio molecular dynamicswasthe pioneeringintroduction of
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the Car{P arrinello approach 108, seealso Fig. 1. This technique openednovel av-
enuesto treat large{scaleproblemsvia ab initio molecular dynamicsand catalyzed
the entire �eld by making \in teresting calculations" possible, seealso the closing
section on applications.

2.4 Car{Parrinel lo Molecular Dynamics

2.4.1 Motivation

A non{obvious approach to cut down the computational expensesof molecular dy-
namics which includes the electrons in a single state was proposed by Car and
Parrinello in 1985 108. In retrospect it can be consideredto combine the advan-
tagesof both Ehrenfest and Born{Opp enheimermolecular dynamics. In Ehrenfest
dynamics the time scaleand thus the time step to integrate Eqs. (30) and (31)
simultaneously is dictated by the intrinsic dynamics of the electrons. Since elec-
tronic motion is much faster than nuclear motion, the largest possible time step
is that which allows to integrate the electronic equations of motion. Contrary
to that, there is no electron dynamics whatsoever involved in solving the Born{
Oppenheimer Eqs. (32){(33), i.e. they can be integrated on the time scalegiven
by nuclear motion. However, this means that the electronic structure problem
has to be solved self{consistently at each molecular dynamics step, whereasthis is
avoided in Ehrenfest dynamics due to the possibility to propagate the wavefunc-
tion by applying the Hamiltonian to an initial wavefunction (obtained e.g. by one
self{consistent diagonalization).

From an algorithmic point of view the main task achieved in ground{state
Ehrenfest dynamics is simply to keep the wavefunction automatically minimized
as the nuclei are propagated. This, however, might be achieved { in principle { by
another sort of deterministic dynamics than �rst{order Schr•odinger dynamics. In
summary, the \Best of all Worlds Method" should (i) integrate the equations of
motion on the (long) time scaleset by the nuclear motion but nevertheless(ii) take
intrinsically advantage of the smooth time{evolution of the dynamically evolving
electronic subsystemas much as possible. The secondpoint allows to circumvent
explicit diagonalization or minimization to solve the electronic structure problem
for the next molecular dynamics step. Car{P arrinello molecular dynamics is an ef-
�cien t method to satisfy requirement (ii) in a numerically stable fashion and makes
an acceptablecompromiseconcerningthe length of the time step (i).

2.4.2 Car{Parrinel lo Lagrangian and Equations of Motion

The basic idea of the Car{P arrinello approach can be viewed to exploit the
quantum{mechanical adiabatic time{scale separation of fast electronic and slow
nuclear motion by transforming that into classical{mechanical adiabatic energy{
scaleseparation in the framework of dynamical systemstheory. In order to achieve
this goal the two{component quantum / classicalproblem is mapped onto a two{
component purely classicalproblem with two separateenergyscalesat the expense
of loosing the explicit time{dependenceof the quantum subsystemdynamics. Fur-
thermore, the central quantit y, the energyof the electronic subsystemh	 0 jH ej	 0i
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evaluated with somewavefunction 	 0, is certainly a function of the nuclear posi-
tions f R I g. But at the sametime it can be consideredto be a functional of the
wavefunction 	 0 and thus of a set of one{particle orbitals f  i g (or in general of
other functions such as two{particle geminals) used to build up this wavefunction
(being for instance a Slater determinant 	 0 = detf  i g or a combination thereof).
Now, in classical mechanics the force on the nuclei is obtained from the deriva-
tiv e of a Lagrangian with respect to the nuclear positions. This suggeststhat a
functional derivative with respect to the orbitals, which are interpreted as classical
�elds, might yield the force on the orbitals, given a suitable Lagrangian. In addi-
tion, possibleconstraints within the set of orbitals have to be imposed,such as e.g.
orthonormalit y (or generalizedorthonormalit y conditions that include an overlap
matrix).

Car and Parrinello postulated the following classof Lagrangians 108

L CP =
X

I

1
2

M I _R 2
I +

X

i

1
2

� i

D
_ i

��
� _ i

E

| {z }
kinetic energy

� h	 0 jH ej	 0 i
| {z }

potential energy

+ constraints| {z }
orthonormalit y

(41)

to serve this purpose. The corresponding Newtonian equations of motion are ob-
tained from the associated Euler{Lagrange equations

d
dt

@L

@_R I
=

@L
@R I

(42)

d
dt

� L

� _ ?
i

=
� L
�  ?

i
(43)

like in classicalmechanics,but here for both the nuclear positions and the orbitals;
note  ?

i = h i j and that the constraints are holonomic 244. Following this route of
ideas,genericCar{P arrinello equationsof motion are found to be of the form

M I •R I (t) = �
@

@R I
h	 0 jH ej	 0 i +

@
@R I

f constraintsg (44)

� i
• i (t) = �

�
�  ?

i
h	 0 jH ej	 0i +

�
�  ?

i
f constraintsg (45)

where � i (= � ) are the \�ctitious masses"or inertia parameters assignedto the
orbital degreesof freedom; the units of the massparameter � are energy times a
squared time for reasonsof dimensionality. Note that the constraints within the
total wavefunction lead to \constrain t forces" in the equationsof motion. Note also
that theseconstraints

constraints = constraints (f  i g; f R I g) (46)

might be a function of both the set of orbitals f  i g and the nuclear positions f R I g.
These dependencieshave to be taken into account properly in deriving the Car{
Parrinello equations following from Eq. (41) using Eqs. (42){(43), seeSect. 2.5 for
a generaldiscussionand seee.g. Ref. 351 for a casewith an additional dependence
of the wavefunction constraint on nuclear positions.
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According to the Car{P arrinello equationsof motion, the nuclei evolve in time
at a certain (instantaneous) physical temperature /

P
I M I _R 2

I , whereasa \�c-
titious temperature" /

P
i � i h _ i j _ i i is associated to the electronic degreesof

freedom. In this terminology, \lo w electronic temperature" or \cold electrons"
meansthat the electronic subsystemis closeto its instantaneousminimum energy
minf  i gh	 0 jH ej	 0i , i.e. close to the exact Born{Opp enheimer surface. Thus, a
ground{state wavefunction optimized for the initial con�guration of the nuclei will
stay closeto its ground state alsoduring time evolution if it is kept at a su�cien tly
low temperature.

The remaining task is to separatein practice nuclear and electronicmotion such
that the fast electronic subsystemstays cold also for long times but still follows
the slow nuclear motion adiabatically (or instantaneously). Simultaneously, the
nuclei are neverthelesskept at a much higher temperature. This can be achieved
in nonlinear classicaldynamics via decoupling of the two subsystemsand (quasi{)
adiabatic time evolution. This is possible if the power spectra stemming from
both dynamics do not have substantial overlap in the frequency domain so that
energy transfer from the \hot nuclei" to the \cold electrons" becomespractically
impossibleon the relevant time scales.This amounts in other wordsto imposingand
maintaining a metastabilit y condition in a complexdynamical systemfor su�cien tly
long times. How and to which extend this is possiblein practice wasinvestigatedin
detail in an important investigation basedon well{controlled model systems467;468

(seealso Sects.3.2 and 3.3 in Ref. 513), with more mathematical rigor in Ref. 86,
and in terms of a generalization to a secondlevel of adiabaticit y in Ref. 411.

2.4.3 Why Does the Car{Parrinel lo Method Work ?

In order to shed light on the title question, the dynamics generatedby the Car{
Parrinello Lagrangian Eq. (41) is analyzed 467 in more detail invoking a \classical
dynamics perspective" of a simple model system (eight silicon atoms forming a
periodic diamond lattice, local density approximation to density functional theory,
normconserving pseudopotentials for core electrons, plane wave basis for valence
orbitals, 0.3 fs time step with � = 300 a.u., in total 20 000 time steps or 6.3 ps),
for full details seeRef. 467); a concisepresentation of similar ideas can be found
in Ref. 110. For this system the vibrational density of states or power spectrum
of the electronic degreesof freedom, i.e. the Fourier transform of the statistically
averagedvelocity autocorrelation function of the classical�elds

f (! ) =
Z 1

0
dt cos(! t)

X

i

D
_ i ; t

�
�
� _ i ; 0

E
(47)

is comparedto the highest{frequency phonon mode ! max
n of the nuclear subsystem

in Fig. 2. From this �gure it is evident that for the chosenparametersthe nuclear
and electronic subsystemsare dynamically separated: their power spectra do not
overlap so that energy transfer from the hot to the cold subsystemis expected to
be prohibitiv ely slow, seeSect. 3.3 in Ref. 513 for a similar argument.

This is indeed the caseas can be veri�ed in Fig. 3 where the conserved energy
Econs, physical total energyEphys , electronicenergyVe, and �ctitious kinetic energy

16



4 0

2 0

0

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0

w  ( T H z )

f(
w

)
 (

a
r

b
. 

u
n

it
s

)

Figure 2. Vibrational density of states Eq. (47) (contin uousspectrum in upp er part) and harmonic
approximation thereof Eq. (52) (stic k spectrum in lower part) of the electronic degreesof freedom
compared to the highest{freq uency phonon mode ! max

n (triangle) for a model system; for further
details seetext. Adapted from Ref. 467 .

of the electronsTe

Econs =
X

i

1
2

� i

D
_ i

�
�� _ i

E
+

X

I

1
2

M I _R 2
I + h	 0 jH ej	 0 i (48)

Ephys =
X

I

1
2

M I _R 2
I + h	 0 jH ej	 0i = Econs � Te (49)

Ve = h	 0 jH ej	 0 i (50)

Te =
X

i

1
2

� i

D
_ i

�
�
� _ i

E
(51)

are shown for the samesystemas a function of time. First of all, there should be a
conserved energyquantit y accordingto classicaldynamicssincethe constraints are
holonomic 244. Indeed\the Hamiltonian" or conserved energyE cons is a constant of
motion (with relative variations smaller than 10� 6 and with no drift), which serves
as an extremely sensitive check of the molecular dynamics algorithm. Contrary
to that the electronic energy Ve displays a simple oscillation pattern due to the
simplicit y of the phonon modes.

Most importantly , the �ctitious kinetic energy of the electrons Te is found to
perform bound oscillations around a constant, i.e. the electrons \do not heat up"
systematically in the presenceof the hot nuclei; note that Te is a measurefor devi-
ations from the exact Born{Opp enheimersurface. Closer inspection shows actually
two time scalesof oscillations: the onevisible in Fig. 3 stemsfrom the drag exerted
by the moving nuclei on the electronsand is the mirror imageof the Ve uctuations.
Superimposedon top of that (not shown, but seeFig. 4(b)) are small{amplitude
high frequencyoscillations intrinsic to the �ctitious electrondynamicswith a period
of only a fraction of the visible mode. Theseoscillations are actually instrumental
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Figure 3. Various energiesEqs. (48){(51) for a model system propagated via Car{P arrinello molec-
ular dynamics for at short (up to 300 fs), intermediate, and long times (up to 6.3 ps); for further
details seetext. Adapted from Ref. 467 .

for the stabilit y of the Car{P arrinello dynamics, vide infra. But already the visible
variations are three ordersof magnitude smaller than the physically meaningful os-
cillations of Ve. As a result, Ephys de�ned as Econs � Te or equivalently as the sum
of the nuclear kinetic energy and the electronic total energy (which serves as the
potential energy for the nuclei) is essentially constant on the relevant energy and
time scales.Thus, it behavesapproximately like the strictly conserved total energy
in classicalmolecular dynamics (with only nuclei as dynamical degreesof freedom)
or in Born{Opp enheimer molecular dynamics (with fully optimized electronic de-
greesof freedom) and is therefore often denoted as the \ph ysical total energy".
This implies that the resulting physically signi�cant dynamics of the nuclei yields
an excellent approximation to microcanonical dynamics (and assumingergodicit y
to the microcanonicalensemble). Note that a di�eren t explanation was advocated
in Ref. 470 (seealso Ref. 472, in particular Sect. VI I I.B and C), which was however
revised in Ref. 110. A discussionsimilar in spirit to the one outlined here 467 is
provided in Ref. 513, seein particular Sect. 3.2 and 3.3.

Given the adiabatic separationand the stabilit y of the propagation, the central
question remains if the forcesacting on the nuclei are actually the \correct" ones
in Car{P arrinello molecular dynamics. As a referenceserve the forces obtained
from full self{consistent minimizations of the electronic energymin f  i gh	 0 jH ej	 0i
at each time step, i.e. Born{Opp enheimermolecular dynamics with extremely well
converged wavefunctions. This is indeed the caseas demonstrated in Fig. 4(a):
the physically meaningful dynamics of the x{component of the force acting on one
silicon atom in the model system obtained from stable Car{P arrinello �ctitious
dynamicspropagation of the electronsand from iterativ e minimizations of the elec-
tronic energyare extremely close.

Better resolution of one oscillation period in (b) reveals that the grossdevia-
tions are also oscillatory but that they are four orders of magnitudes smaller than
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Figure 4. (a) Comparison of the x{comp onent of the force acting on one atom of a model system
obtained from Car{P arrinello (solid line) and well{con vergedBorn{Opp enheimer (dots) molecular
dynamics. (b) Enlarged view of the di�erence between Car{P arrinello and Born{Opp enheimer
forces; for further details seetext. Adapted from Ref. 467 .

the physical variations of the force resolved in Fig. 4(a). Thesecorrespond to the
\large{amplitude" oscillations of Te visible in Fig. 3 due to the drag of the nuclei
exerted on the quasi{adiabatically following electrons having a �nite dynamical
mass� . Note that the inertia of the electronsalso dampensarti�cially the nuclear
motion (t ypically on a few{percent scale, seeSect. V.C.2 in Ref. 75 for an anal-
ysis and a renormalization correction of M I ) but decreasesas the �ctitious mass
approachesthe adiabatic limit � ! 0. Superimposedon the grossvariation in (b)
are again high{frequency bound oscillatory small{amplitude uctuations like for Te.
They lead on physically relevant time scales (i.e. those visible in Fig. 4(a)) to \a v-
eraged forces" that are very close to the exact ground{state Born{Opp enheimer
forces. This feature is an important ingredient in the derivation of adiabatic dy-
namics 467;411.

In conclusion,the Car{P arrinello forcecanbe said to deviate at most instants of
time from the exact Born{Opp enheimer force. However, this doesnot disturb the
physical time evolution due to (i) the smallnessand boundednessof this di�erence
and (ii) the intrinsic averaginge�ect of small{amplitude high{frequency oscillations
within a few molecular dynamics time steps,i.e. on the sub{femtosecondtime scale
which is irrelevant for nuclear dynamics.

2.4.4 How to Control Adiabaticity ?

An important question is under which circumstancesthe adiabatic separation can
be achieved, and how it can be controlled. A simple harmonic analysis of the
frequencyspectrum of the orbital classical�elds closeto the minimum de�ning the
ground state yields 467

! ij =
�

2(� i � � j )
�

� 1=2

; (52)

19



where � j and � i are the eigenvalues of occupied and unoccupied orbitals, respec-
tiv ely; seeEq. (26) in Ref. 467 for the casewhere both orbitals are occupied ones.
It can be seenfrom Fig. 2 that the harmonic approximation works faithfully as
comparedto the exact spectrum; seeRef. 471 and Sect. IV.A in Ref. 472 for a more
general analysis of the associated equations of motion. Since this is in particu-
lar true for the lowest frequency ! min

e , the handy analytic estimate for the lowest
possibleelectronic frequency

! min
e /

�
Egap

�

� 1=2

; (53)

shows that this frequency increaseslike the square root of the electronic energy
di�erence Egap between the lowest unoccupied and the highest occupied orbital.
On the other hand it increasessimilarly for a decreasing�ctitious massparameter
� .

In order to guarantee the adiabatic separation, the frequencydi�erence ! min
e �

! max
n should be large, seeSect. 3.3 in Ref. 513 for a similar argument. But both

the highest phonon frequency! max
n and the energygap Egap are quantities that a

dictated by the physics of the system. Whence, the only parameter in our hands
to control adiabatic separation is the �ctitious mass,which is therefore also called
\adiabaticit y parameter". However, decreasing� not only shifts the electronic
spectrum upwards on the frequency scale,but also stretches the entire frequency
spectrum accordingto Eq. (52). This leadsto an increaseof the maximum frequency
according to

! max
e /

�
Ecut

�

� 1=2

; (54)

where Ecut is the largest kinetic energy in an expansion of the wavefunction in
terms of a plane wave basisset, seeSect. 3.1.3.

At this placea limitation to decrease� arbitrarily kicks in due to the maximum
length of the molecular dynamics time step � tmax that can be used. The time step
is inverselyproportional to the highest frequencyin the system,which is ! max

e and
thus the relation

� tmax /
�

�
Ecut

� 1=2

(55)

governs the largest time step that is possible. As a consequence,Car{P arrinello
simulators have to �nd their way betweenScylla and Charybdis and have to make
a compromiseon the control parameter � ; typical valuesfor large{gap systemsare
� = 500{1500 a.u. together with a time step of about 5{10 a.u. (0.12{0.24 fs).
Recently , an algorithm wasdevisedthat optimizes � during a particular simulation
given a �xed accuracy criterion 87. Note that a poor man's way to keep the time
step large and still increase� in order to satisfy adiabaticit y is to chooseheavier
nuclear masses.That depressesthe largest phonon or vibrational frequency ! max

n
of the nuclei (at the cost of renormalizing all dynamical quantities in the senseof
classicalisotope e�ects).
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Up to this point the entire discussionof the stabilit y and adiabaticit y issues
was basedon model systems,approximate and mostly qualitativ e in nature. But
recently it wasactually proven 86 that the deviation or the absoluteerror � � of the
Car{P arrinello tra jectory relative to the tra jectory obtained on the exact Born{
Oppenheimerpotential energysurfaceis controlled by � :
Theorem 1 iv.): There are constants C > 0 and � ? > 0 such that

� � =
��R � (t) � R 0(t)

�� +
�� j  � ; t i �

��  0; t
� �� � C� 1=2 ; 0 � t � T (56)

and the �ctitious kinetic energy satis�es

Te =
1
2

�
D

_ � ; t
�
�
� _ � ; t

E
� C� ; 0 � t � T (57)

for all valuesof the parameter � satisfying 0 < � � � ?, where up to time T > 0
there exists a unique nuclear tra jectory on the exact Born{Opp enheimer surface
with ! min

e > 0 for 0 � t � T, i.e. there is \alw ays" a �nite electronic excitation
gap. Here, the superscript � or 0 indicates that the tra jectory was obtained via
Car{P arrinello molecular dynamics using a �nite mass � or via dynamics on the
exact Born{Opp enheimer surface, respectively. Note that not only the nuclear
tra jectory is shown to be close to the correct one, but also the wavefunction is
proven to stay close to the fully converged one up to time T. Furthermore, it
was also investigated what happens if the initial wavefunction at t = 0 is not the
minimum of the electronic energyhHei but trapped in an excited state. In this case
it is found that the propagated wavefunction will keepon oscillating at t > 0 also
for � ! 0 and not even time averagesconvergeto any of the eigenstates.Note that
this doesnot precludeCar{P arrinello moleculardynamicsin excited states,which is
possiblegivena properly \minimizable" expressionfor the electronicenergy, seee.g.
Refs. 281;214. However, this �nding might have crucial implications for electronic
level{crossing situations.

What happens if the electronic gap is very small or even vanishesE gap ! 0
as is the casefor metallic systems? In this limit, all the above{given arguments
break down due to the occurrenceof zero{frequencyelectronic modesin the power
spectrum according to Eq. (53), which necessarilyoverlap with the phonon spec-
trum. Following an idea of Sprik 583 applied in a classicalcontext it was shown
that the coupling of separateNos�e{Hoover thermostats 12;270;217 to the nuclear and
electronicsubsystemcanmaintain adiabaticit y by counterbalancing the energyo w
from ions to electronsso that the electronsstay \cool" 74; seeRef. 204 for a simi-
lar idea to restore adiabaticit y. Although this method is demonstrated to work in
practice 464, this ad hoc cure is not entirely satisfactory from both a theoretical and
practical point of view so that the well{controlled Born{Opp enheimerapproach is
recommendedfor strongly metallic systems. An additional advantage for metal-
lic systems is that the latter is also better suited to sample many k{p oints (see
Sect.3.1.3), allows easily for fractional occupation numbers 458;168, and can handle
e�cien tly the so{called charge sloshingproblem 472.
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2.4.5 The Quantum Chemistry Viewpoint

In order to understand Car{P arrinello molecular dynamicsalsofrom the \quantum
chemistry perspective", it is usefulto formulate it for the specialcaseof the Hartree{
Fock approximation using

L CP =
X

I

1
2

M I _R 2
I +

X

i

1
2

� i

D
_ i

�
�
� _ i
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e j	 0
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+
X

i;j

� ij (h i j j i � � ij ) : (58)

The resulting equationsof motion
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• i (t) = �H HF

e  i +
X

j

� ij  j (60)

are very close to those obtained for Born{Opp enheimer molecular dynamics
Eqs. (39){(40) except for (i) no need to minimize the electronic total energy ex-
pressionand (ii) featuring the additional �ctitious kinetic energy term associated
to the orbital degreesof freedom. It is suggestive to argue that both setsof equa-
tions becomeidentical if the term j� i

• i (t)j is small at any time t comparedto the
physically relevant forces on the right{hand{side of both Eq. (59) and Eq. (60).
This term being zero (or small) meansthat one is at (or closeto) the minimum of
the electronic energy h	 0 jH HF

e j	 0 i since time derivativesof the orbitals f  i g can
be consideredas variations of 	 0 and thus of the expectation value hHHF

e i itself.
In other words, no forcesact on the wavefunction if � i

• i � 0. In conclusion, the
Car{P arrinello equations are expected to produce the correct dynamics and thus
physical tra jectories in the microcanonical ensemble in this idealized limit. But
if j� i

• i (t)j is small for all i , this also implies that the associated kinetic energy
Te =

P
i � i h _ i j _ i i =2 is small, which connects these more qualitativ e arguments

with the previous discussion467.
At this stage, it is also interesting to comparethe structure of the Lagrangian

Eq. (58) and the Euler{Lagrange equation Eq. (43) for Car{P arrinello dynamics to
the analoguesequations (36) and (37), respectively, used to derive \Hartree{F ock
statics". The former reduceto the latter if the dynamical aspect and the associated
time evolution is neglected, that is in the limit that the nuclear and electronic
momenta are absent or constant. Thus, the Car{P arrinello ansatz,namely Eq. (41)
together with Eqs. (42){(43), can also be viewed as a prescription to derive a new
classof \dynamical ab initio methods" in very generalterms.

2.4.6 The Simulated Annealing and Optimization Viewpoints

In the discussiongiven above, Car{P arrinello molecular dynamics was motivated
by \combining" the positive features of both Ehrenfest and Born{Opp enheimer
molecular dynamics as much as possible. Looked at from another side, the Car{
Parrinello method can also be consideredas an ingenious way to perform global
optimizations (minimizations) of nonlinear functions, here h	 0 jH ej	 0 i , in a high{
dimensional parameter spaceincluding complicated constraints. The optimization
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parametersarethoseusedto represent the total wavefunction 	 0 in terms of simpler
functions, for instance expansioncoe�cien ts of the orbitals in terms of Gaussians
or plane waves, seee.g. Refs. 583;375;693;608 for applications of the same idea in
other �elds.

Keeping the nuclei frozen for a moment, one could start this optimization pro-
cedurefrom a \random wavefunction" which certainly doesnot minimize the elec-
tronic energy. Thus, its �ctitious kinetic energy is high, the electronic degreesof
freedom are \hot". This energy, however, can be extracted from the system by
systematically cooling it to lower and lower temperatures. This can be achieved
in an elegant way by adding a non{conservative damping term to the electronic
Car{P arrinello equation of motion Eq. (45)

� i
• i (t) = �

�
�  ?

i
h	 0jH ej	 0i +

�
�  ?

i
f constraintsg �  e� i  i ; (61)

where  e � 0 is a friction constant that governs the rate of energydissipation 610;
alternativ ely, dissipation canbe enforcedin a discretefashionby reducing the veloc-
ities by multiplying them with a constant factor < 1. Note that this deterministic
and dynamical method is very similar in spirit to simulated annealing 332 invented
in the framework of the stochastic Monte Carlo approach in the canonicalensemble.
If the energydissipation is done slowly, the wavefunction will �nd its way down to
the minimum of the energy. At the end, an intricate global optimization has been
performed!

If the nuclei are allowed to move according to Eq. (44) in the presenceof an-
other damping term a combined or simultaneous optimization of both electrons
and nuclei can be achieved, which amounts to a \global geometry optimization".
This perspective is stressedin more detail in the review Ref. 223 and an imple-
mentation of such ideaswithin the CADPACquantum chemistry code is described in
Ref. 692. This operational mode of Car{P arrinello molecular dynamics is related to
other optimization techniqueswhereit is aimed to optimize simultaneously both the
structure of the nuclear skeleton and the electronic structure. This is achieved by
consideringthe nuclear coordinates and the expansioncoe�cien ts of the orbitals as
variation parameterson the samefooting 49;290;608. But Car{P arrinello molecular
dynamics is more than that becauseeven if the nuclei contin uously move according
to Newtonian dynamics at �nite temperature an initially optimized wavefunction
will stay optimal along the nuclear tra jectory.

2.4.7 The Extended Lagrangian Viewpoint

There is still another way to look at the Car{P arrinello method, namely in the
light of so{called \extended Lagrangians" or \extended system dynamics" 14, see
e.g. Refs. 136;12;270;585;217 for introductions. The basic idea is to couple additional
degreesof freedomto the Lagrangian of interest, thereby \extending" it by increas-
ing the dimensionality of phasespace. These degreesof freedom are treated like
classicalparticle coordinates, i.e. they are in generalcharacterized by \p ositions",
\momenta", \masses", \in teractions" and a \coupling term" to the particle's po-
sitions and momenta. In order to distinguish them from the physical degreesof
freedom, they are often called \�ctitious degreesof freedom".
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The corresponding equations of motion follow from the Euler{Lagrange equa-
tions and yield a microcanonical ensemble in the extended phasespacewhere the
Hamiltonian of the extended system is strictly conserved. In other words, the
Hamiltonian of the physical (sub{) system is no more (strictly) conserved, and the
produced ensemble is no more the microcanonical one. Any extended system dy-
namicsis constructedsuch that time{a veragestakenin that part of phasespacethat
is associated to the physical degreesof freedom(obtained from a partial trace over
the �ctitious degreesof freedom) are physically meaningful. Of course,dynamics
and thermodynamics of the systemare a�ected by adding �ctitious degreesof free-
dom, the classicexamplesbeing temperature and pressurecontrol by thermostats
and barostats, seeSect. 4.2.

In the case of Car{P arrinello molecular dynamics, the basic Lagrangian for
Newtonian dynamics of the nuclei is actually extended by classical �elds f  i (r )g,
i.e. functions instead of coordinates, which represent the quantum wavefunction.
Thus, vector products or absolutevalueshave to be generalizedto scalar products
and norms of the �elds. In addition, the \p ositions" of these �elds f  i g actually
have a physical meaning,contrary to their momenta f _ i g.

2.5 What about Hellmann{Feynman Forces ?

An important ingredient in all dynamics methods is the e�cien t calculation of the
forces acting on the nuclei, seeEqs. (30), (32), and (44). The straightforward
numerical evaluation of the derivative

F I = �r I h	 0 jH ej	 0 i (62)

in terms of a �nite{di�erence approximation of the total electronic energy is both
too costly and too inaccurate for dynamical simulations. What happensif the gra-
dients are evaluated analytically? In addition to the derivative of the Hamiltonian
itself

r I h	 0 jH ej	 0 i = h	 0 jr I H ej	 0i

+ hr I 	 0 jH ej	 0 i + h	 0 jH ejr I 	 0 i (63)

there are in generalalsocontributions from variations of the wavefunction � r I 	 0.
In generalmeanshere that thesecontributions vanish exactly

FHFT
I = � h	 0 jr I H ej	 0i (64)

if the wavefunction is an exact eigenfunction (or stationary state wavefunction) of
the particular Hamiltonian under consideration. This is the content of the often{
cited Hellmann{Feynman Theorem 295;186;368, which is also valid for many varia-
tional wavefunctions (e.g. the Hartree{Fock wavefunction) provided that complete
basis setsare used. If this is not the case,which has to be assumedfor numerical
calculations, the additional terms have to be evaluated explicitly .

In order to proceeda Slater determinant 	 0 = detf  i g of one{particle orbitals
 i , which themselvesare expanded

 i =
X

�

ci� f � (r ; f R I g) (65)
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in terms of a linear combination of basisfunctions f f � g, is usedin conjunction with
an e�ectiv e one{particle Hamiltonian (such ase.g. in Hartree{Fock or Kohn{Sham
theories). The basis functions might depend explicitly on the nuclear positions (in
the caseof basisfunctions with origin such as atom{centered orbitals), whereasthe
expansioncoe�cien ts always carry an implicit dependence.This meansthat from
the outset two sorts of forcesare expected

r I  i =
X

�

(r I ci� ) f � (r ; f R I g) +
X

�

ci� (r I f � (r ; f R I g)) (66)

in addition to the Hellmann{Feynman force Eq. (64).
Using such a linear expansionEq. (65), the force contributions stemming from

the nuclear gradients of the wavefunction in Eq. (63) can be disentangled into two
terms. The �rst one is called \incomplete{basis{set correction" (IBS) in solid state
theory 49;591;180 and correspondsto the \w avefunction force" 494 or \Pula y force" in
quantum chemistry 494;496. It contains the nuclear gradients of the basis functions

F IBS
I = �

X

i� �

�

r I f �

��HNSC
e � � i

�� f �
�

+


f �

��HNSC
e � � i

�� r f �
��

(67)

and the (in practice non{self{consistent) e�ectiv e one{particle Hamiltonian 49;591.
The secondterm leadsto the so{called \non{self{consistency correction" (NSC) of
the force 49;591

FNSC
I = �

Z
dr (r I n)

�
V SCF � V NSC �

(68)

and is governedby the di�erence betweenthe self{consistent (\exact") potential or
�eld V SCF and its non{self{consistent (or approximate) counterpart V NSC associ-
ated to H NSC

e ; n(r ) is the charge density. In summary, the total force neededin ab
initio molecular dynamics simulations

F I = FHFT
I + F IBS

I + FNSC
I (69)

comprises in general three qualitativ ely di�eren t terms; see the tutorial article
Ref. 180 for a further discussionof corevs. valencestatesand the e�ect of pseudopo-
tentials. Assuming that self{consistencyis exactly satis�ed (which is never going
to be the casein numerical calculations), the force F NSC

I vanishesand H SCF
e has to

be used to evaluate F IBS
I . The Pulay contribution vanishesin the limit of using a

completebasisset (which is also not possibleto achieve in actual calculations).
The most obvious simpli�cation arisesif the wavefunction is expandedin terms

of originlessbasisfunctions such asplane waves,seeEq. (100). In this casethe Pu-
lay forcevanishesexactly, which appliesof courseto all ab initio moleculardynamics
schemes(i.e. Ehrenfest, Born{Opp enheimer, and Car{P arrinello) using that par-
ticular basisset. This statement is true for calculations where the number of plane
wavesis �xed. If the number of plane waveschanges,such as in (constant pressure)
calculations with varying cell volume / shape where the energy cuto� is strictly
�xed instead, Pulay stresscontributions crop up 219;245;660;211;202, seeSect. 4.2. If
basissetswith origin are usedinstead of plane wavesPulay forcesarisealways and
have to be included explicitely in forcecalculations, seee.g. Refs. 75;370;371 for such
methods. Another interesting simpli�cation of the sameorigin is noted in passing:

25



there is no basisset superposition error (BSSE) 88 in plane wave{basedelectronic
structure calculations.

A non{obvious and more delicate term in the context of ab initio molecular
dynamics is the one stemming from non{self{consistencyEq. (68). This term van-
ishesonly if the wavefunction 	 0 is an eigenfunctionof the Hamiltonian within the
subspace spanned by the �nite basisset used. This demandslessthan the Hellmann{
Feynman theorem where 	 0 has to be an exact eigenfunction of the Hamiltonian
and a complete basis set has to be used in turn. In terms of electronic structure
calculations completeself{consistency(within a given incomplete basisset) has to
be reached in order that F NSC

I vanishes.Thus, in numerical calculations the NSC
term can be madearbitrarily small by optimizing the e�ectiv e Hamiltonian and by
determining its eigenfunctionsto very high accuracy, but it can never be suppressed
completely.

The crucial point is, however, that in Car{P arrinello as well as in Ehrenfest
molecular dynamics it is not the minimized expectation value of the electronic
Hamiltonian, i.e. min 	 0 fh	 0 jH ej	 0ig , that yields the consistent forces. What is
merely neededis to evaluate the expressionh	 0 jH ej	 0 i with the Hamiltonian and
the associated wavefunction available at a certain time step, compareEq. (32) to
Eq. (44) or (30). In other words, it is not required (concerningthe present discussion
of the contributions to the force!) that the expectation value of the electronic
Hamiltonian is actually completely minimized for the nuclear con�guration at that
time step. Whence,full self{consistencyis not required for this purposein the case
of Car{P arrinello (and Ehrenfest) molecular dynamics. As a consequence,the non{
self{consistencycorrection to the forceF NSC

I Eq. (68) is irrelevant in Car{P arrinello
(and Ehrenfest) simulations.

In Born{Opp enheimermolecular dynamics, on the other hand, the expectation
value of the Hamiltonian has to be minimized for each nuclear con�guration before
taking the gradient to obtain the consistent force! In this scheme there is (inde-
pendently from the issueof Pulay forces)alwaysthe non{vanishing contribution of
the non{self{consistency force, which is unknown by its very de�nition (if it were
know, the problem was solved, seeEq. (68)). It is noted in passingthat there are
estimation schemesavailable that correct approximately for this systematic error in
Born{Opp enheimerdynamicsand lead to signi�cant time{savings, seee.g. Ref. 344.

Heuristically onecould alsoarguethat within Car{P arrinello dynamicsthe non{
vanishing non{self{consistency force is kept under control or counterbalanced by
the non{vanishing \mass times accelerationterm" � i

• i (t) � 0, which is small but
not identical to zero and oscillatory. This is su�cien t to keepthe propagation sta-
ble, whereas� i

• i (t) � 0, i.e. an extremely tight minimization min 	 0 fh	 0 jH ej	 0ig ,
is required by its very de�nition in order to make the Born{Opp enheimerapproach
stable, compare again Eq. (60) to Eq. (40). Thus, also from this perspective it
becomesclear that the �ctitious kinetic energyof the electronsand thus their �cti-
tious temperature is a measurefor the departure from the exact Born{Opp enheimer
surfaceduring Car{P arrinello dynamics.

Finally , the present discussionshows that nowherein theseforcederivations was
made use of the Hellmann{Feynman theorem as is sometimesstated. Actually , it
is known for a long time that this theorem is quite uselessfor numerical electronic
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structure calculations, seee.g. Refs. 494;49;496 and referencestherein. Rather it
turns out that in the caseof Car{P arrinello calculations using a plane wave basis
the resulting relation for the force, namely Eq. (64), looks like the one obtained by
simply invoking the Hellmann{Feynman theorem at the outset.

It is interesting to recall that the Hellmann{Feynman theorem as applied to a
non{eigenfunction of a Hamiltonian yields only a �rst{order perturbativ e estimate
of the exact force 295;368. The sameargument applies to ab initio molecular dy-
namicscalculations wherepossibleforcecorrectionsaccordingto Eqs. (67) and (68)
areneglectedwithout justi�cation. Furthermore, such simulations canof coursenot
strictly conserve the total Hamiltonian E cons Eq. (48). Finally , it shouldbe stressed
that possiblecontributions to the force in the nuclear equation of motion Eq. (44)
due to position{dependent wavefunction constraints have to be evaluated following
the sameprocedure. This leads to similar \correction terms" to the force, seee.g.
Ref. 351 for such a case.

2.6 Which Method to Choose?

Presumablythe most important questionfor practical applications is which abinitio
molecular dynamicsmethod is the most e�cien t in terms of computer time given a
speci�c problem. An a priori advantage of both the Ehrenfest and Car{P arrinello
schemes over Born{Opp enheimer molecular dynamics is that no diagonalization
of the Hamiltonian (or the equivalent minimization of an energy functional) is
necessary, except at the very �rst step in order to obtain the initial wavefunc-
tion. The di�erence is, however, that the Ehrenfest time{evolution according to
the time{dependent Schr•odinger equation Eq. (26) conformsto a unitary propaga-
tion 341;366;342

	( t0 + � t) = exp[� iH e(t0)� t=
�

] 	( t0) (70)

	( t0 + m � t) = exp[� iH e(t0 + (m � 1)� t) � t=
�

]

� � � �

� exp[� iH e(t0 + 2� t) � t=
�

]

� exp[� iH e(t0 + � t) � t=
�

]

� exp[� iH e(t0) � t=
�

] 	( t0) (71)

	( t0 + tmax ) � t ! 0= T exp

"

�
i

�

Z t 0+ t max

t 0

dt H e(t)

#

	( t0) (72)

for in�nitesimally short times given by the time step � t = t max =m; here T is the
time{ordering operator and H e(t) is the Hamiltonian (which is implicitly time{
dependent via the positions f R I (t)g) evaluated at time t using e.g. split operator
techniques 183. Thus, the wavefunction 	 will conserve its norm and in particular
orbitals usedto expandit will stay orthonormal, seee.g. Ref. 617. In Car{P arrinello
molecular dynamics, on the contrary, the orthonormalit y has to be imposedbrute
force by Lagrange multipliers, which amounts to an additional orthogonalization
at each molecular dynamics step. If this is not properly done, the orbitals will
becomenon{orthogonal and the wavefunction unnormalized, seee.g. Sect. I I I.C.1
in Ref. 472.
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But this theoretical disadvantage of Car{P arrinello vs. Ehrenfest dynamics is
in reality more than compensatedby the possibility to usea much larger time step
in order to propagate the electronic (and thus nuclear) degreesof freedom in the
former scheme. In both approaches,there is the time scaleinherent to the nuclear
motion � n and the one stemming from the electronic dynamics � e. The �rst one
can be estimated by considering the highest phonon or vibrational frequency and
amounts to the order of � n � 10� 14 s (or 0.01 ps or 10 fs, assuminga maximum
frequencyof about 4000cm� 1). This time scaledependsonly on the physicsof the
problem under considerationand yields an upper limit for the timestep � t max that
can be usedin order to integrate the equationsof motion, e.g. � t max � � n=10.

The fasted electronic motion in Ehrenfest dynamics can be estimated within a
plane wave expansionby ! E

e � Ecut , where Ecut is the maximum kinetic energy
included in the expansion. A realistic estimate for reasonablebasis sets is � E

e �
10� 16 s, which leads to � E

e � � n=100. The analoguesrelation for Car{P arrinello
dynamics readshowever ! CP

e � (Ecut =� )1=2 according to the analysis in Sect. 2.4,
seeEq. (54). Thus, in addition to reducing! CP

e by introducing a �nite electronmass
� , the maximum electronic frequencyincreasesmuch more slowly in Car{P arrinello
than in Ehrenfest molecular dynamics with increasingbasisset size. An estimate
for the samebasisset and a typical �ctitious massyields about � CP

e � 10� 15 s or
� CP

e � � n=10. According to this simple estimate, the time step can be about one
order of magnitude larger if Car{P arrinello second{order �ctitious{time electron
dynamics is usedinstead of Ehrenfest �rst{order real{time electron dynamics.

The time scale and thus time step problem inherent to Ehrenfest dynamics
prompted some attempts to releave it. In Ref. 203 the equations of motion of
electronsand nuclei were integrated using two di�eren t time steps, the one of the
nuclei being 20{times as large as the electronic one. The powerful technology
of multiple{time step integration theory 636;639 could also be applied in order to
ameliorate the time scaledisparity 585. A di�eren t approach borrowed from plasma
simulations consists in decreasingthe nuclear massesso that their time evolution
is arti�cially speededup 617. As a result, the nuclear dynamics is �ctitious (in the
presenceof real{time electrondynamics!) and hasto be rescaledto the proper mass
ratio after the simulation.

In both Ehrenfest and Car{P arrinello schemesthe explicitly treated electron
dynamics limits the largest time step that can be usedin order to integrate simul-
taneously the coupledequationsof motion for nuclei and electrons. This limitation
does of coursenot exist in Born{Opp enheimer dynamics sincethere is no explicit
electron dynamics so that the maximum time step is simply given by the one in-
trinsic to nuclear motion, i.e. � BO

e � � n . This is formally an order of magnitude
advantage with respect to Car{P arrinello dynamics.

Do theseback{of{the{en velope estimateshaveanything to do with reality? For-
tunately, several state{of{the{art studies are reported in the literature for physi-
cally similar systemswhere all three molecular dynamics schemeshave been em-
ployed. Ehrenfest simulations 553;203 of a dilute K x �(KCl) 1� x melt were performed
using a time step of 0.012{0.024fs. In comparison, a time step as large as 0.4 fs
could be used to produce a stable Car{P arrinello simulation of electrons in liq-
uid ammonia 155;156. Since the physics of these systemshas a similar nature |
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\un bound electrons" dissolved in liquid condensedmatter (localizing as F {centers,
polarons, bipolarons,etc.) | the time step di�erence of about a factor of ten con-
�rms the crude estimate given above. In a Born{Opp enheimer simulation 569 of
again K x �(KCl) 1� x but up to a higher concentration of unbound electronsthe time
step usedwas 0.5 fs.

The time{scale advantage of Born{Opp enheimer vs. Car{P arrinello dynamics
becomesmore evident if the nuclear dynamicsbecomesfairly slow, such as in liquid
sodium 343 or selenium 331 where a time step of 3 fs was used. This establishes
the above{mentioned order of magnitude advantageof Born{Opp enheimervs. Car{
Parrinello dynamicsin advantageouscases.However, it hasto be takeninto account
that in simulations 331 with such a large time step dynamical information is limited
to about 10 THz, which corresponds to frequenciesbelow roughly 500 cm� 1. In
order to resolve vibrations in molecular systemswith sti� covalent bonds the time
step has to be decreasedto lessthan a femtosecond(seethe estimate given above)
also in Born{Opp enheimerdynamics.

The comparison of the overall performance of Car{P arrinello and Born{
Oppenheimer molecular dynamics in terms of computer time is a delicate issue.
For instance it depends crucially on the choice made concerning the accuracy of
the conservation of the energy Econs as de�ned in Eq. (48). Thus, this issueis to
some extend subject of \p ersonal taste" as to what is consideredto be a \suf-
�cien tly accurate" energy conservation. In addition, this comparison might to
di�eren t conclusionsas a function of system size. In order to neverthelessshed
light on this point, microcanonical simulations of 8 silicon atoms were performed
with various parameters using Car{P arrinello and Born{Opp enheimer molecular
dynamics as implemented in the CPMDpackage 142. This large{gap system was
initially extremely well equilibrated and the runs were extended to 8 ps (and a
few to 12 ps with no noticeable di�erence) at a temperature of about 360{370 K
(with � 80 K root{mean{square uctuations). The wavefunction was expandedup
to Ecut = 10 Ry at the �{p oint of a simple cubic supercell and LDA was used
to describe the interactions. In both casesthe velocity Verlet schemewas used to
integrate the equations of motion, seeEqs. (231). It is noted in passingthat also
the velocity Verlet algorithm 638 allows for stable integration of the equations of
motion contrary to the statements in Ref. 513 (seeSect. 3.4 and Figs. 4{5).

In Car{P arrinello molecular dynamics two di�eren t time stepswereused,5 a.u.
and 10a.u. (corresponding to about 0.24fs), in conjunction with a �ctitious electron
mass of � = 400 a.u.; this mass parameter is certainly not optimized and thus
the time step could be increasedfurthermore. Also the largest time step lead to
perfect adiabaticit y (similar to the one documented in Fig. 3), i.e. E phys Eq. (49)
and Te Eq. (51) did not show a systematic drift relative to the energy scaleset
by the variations of Ve Eq. (50). Within Born{Opp enheimer molecular dynamics
the minimization of the energy functional was done using the highly e�cien t DI IS
(direct inversion in the iterativ e subspace)scheme using 10 \history vectors", see
Sect. 3.6. In this case, the time step was either 10 a.u. or 100 a.u. and three
convergencecriteria were used; note that the large time step corresponding to
2.4 fs is already at the limit to be used to investigate typical molecular systems
(with frequenciesup to 3{4000 cm� 1). The convergencecriterion is basedon the
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Figure 5. Conserved energy E cons de�ned in Eq. (48) from Car{P arrinello (CP) and Born{
Opp enheimer (BO) molecular dynamics simulations of a model system for various time steps
and convergencecriteria using the CPMDpackage 142 ; see text for further details and Table 1 for
the corresponding timings. Top: solid line: CP, 5 a.u.; open circles: CP, 10 a.u.; �lled squares:
BO, 10 a.u., 10� 6. Middle: open circles: CP, 10 a.u.; �lled squares: BO, 10 a.u., 10� 6 ; �lled
triangles: BO, 100 a.u., 10� 6 ; open diamonds: BO, 100 a.u., 10� 5. Bottom: open circles: CP,
10 a.u.; open diamonds: BO, 100 a.u., 10� 5; dashed line: BO, 100 a.u., 10� 4.

largest element of the wavefunction gradient which was required to be smaller than
10� 6, 10� 5 or 10� 4 a.u.; note that the resulting energyconvergenceshows roughly
a quadratic dependenceon this criterion.

The outcomeof this comparisonis shown in Fig. 5 in terms of the time evolution
of the conserved energyEcons Eq. (48) on energyscalesthat cover more than three
ordersof magnitude in absoluteaccuracy. Within the present comparisonultimate
energy stabilit y was obtained using Car{P arrinello molecular dynamics with the
shortest time step of 5 a.u., which conserves the energy of the total system to
about 6� 10� 8 a.u. per picosecond,seesolid line in Fig. 5(top). Increasing the
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Table 1. Timings in cpu secondsand energy conservation in a.u. / ps for Car{P arrinello (CP) and
Born{Opp enheimer (BO) molecular dynamics simulations of a model system for 1 ps of tra jectory
on an IBM RS6000 / model 390 (Power2) workstation using the CPMDpackage 142 ; seeFig. 5 for
correspondin g energy plots.

Metho d Time step (a.u.) Convergence(a.u.) Conservation (a.u./ps) Time (s)
CP 5 | 6� 10� 8 3230
CP 7 | 1� 10� 7 2310
CP 10 | 3� 10� 7 1610
BO 10 10� 6 1� 10� 6 16590
BO 50 10� 6 1� 10� 6 4130
BO 100 10� 6 6� 10� 6 2250
BO 100 10� 5 1� 10� 5 1660
BO 100 10� 4 1� 10� 3 1060

time step to 10 a.u. leads to an energy conservation of about 3� 10� 7 a.u./ps and
much larger energyuctuations, seeopen circles in Fig. 5(top). The computer time
neededin order to generateonepicosecondof Car{P arrinello tra jectory increases{
to a good approximation { linearly with the increasingtime step, seeTable 1. The
most stableBorn{Opp enheimerrun wasperformedwith a time stepof 10a.u. and a
convergenceof 10� 6. This leadsto an energyconservation of about 1� 10� 6 a.u./ps,
see�lled squaresin Fig. 5(top).

As the maximum time step in Born{Opp enheimer dynamics is only related
to the time scale associated to nuclear motion it could be increasedfrom 10 to
100 a.u. while keeping the convergenceat the same tight limit of 10� 6. This
worsensthe energy conservation slightly (to about 6� 10� 6 a.u./ps), whereasthe
energy uctuations increasedramatically, see�lled triangles in Fig. 5(middle) and
note the changeof scalecomparedto Fig. 5(top). The overall gain is an acceleration
of the Born{Opp enheimersimulation by a factor of about seven to eight, seeTable1.
In the Born{Opp enheimerscheme,the computer time neededfor a �xed amount of
simulated physical time decreasesonly sublinearly with increasingtime step since
the initial guessfor the iterativ e minimization degradesin qualit y asthe time step is
madelarger. Further savings of computer time canbe easilyachievedby decreasing
the qualit y of the wavefunction convergencefrom 10� 6 to 10� 5 and �nally to 10� 4,
see Table 1. This is unfortunately tied to a signi�cant decreaseof the energy
conservation from 6� 10� 6 a.u./ps at 10� 6 (�lled triangles) to about 1� 10� 3 a.u./ps
at 10� 4 (dashed line) using the same100 a.u. time step, seeFig. 5(bottom) but
note the changeof scalecomparedto Fig. 5(middle).

In conclusion, Born{Opp enheimer molecular dynamics can be made as fast
as (or even faster than) Car{P arrinello molecular dynamics (as measuredby the
amount of cpu time spent per picosecond)at the expenseof sacri�cing accuracy
in terms of energyconservation. In the \classical molecular dynamics communit y"
there is a general consensusthat this conservation law should be taken seriously
being a measureof the numerical qualit y of the simulation. In the \quantum chem-
istry and total energycommunities" this issueis typically of lessconcern. There, it
is rather the qualit y of the convergenceof the wavefunction or energy(as achieved
in every individual molecular dynamics step) that is believed to be crucial in order
to gaugethe qualit y of a particular simulation.
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Finally , it is worth commenting in this particular section on a paper entitled
\A comparisonof Car{P arrinello and Born{Opp enheimergeneralizedvalencebond
molecular dynamics" 229. In this paper one (computationally expensive) term in
the nuclear equations of motion is neglected 648;405. It is well known that using
a basisset with origin, such as Gaussiansf G

� (r ; f R I g) centered at the nuclei, see
Eq. (99), producesvarious Pulay forces,seeSect.2.5. In particular a linear expan-
sion Eq. (65) or (97) basedon such orbitals introducesa position dependenceinto
the orthogonality constraint

h i j j i =
X

� �

c?
i� cj �



f G

�

�
�f G

�

�

| {z }
S� �

= � ij (73)

that is hidden in the overlap matrix S� � (f R I g) which involvesthe basis functions.
According to Eq. (44) this term producesa constraint force of the type

X

ij

� ij

X

� �

c?
i� cj �

@
@R I

S� � (f R I g) (74)

in the correct Car{P arrinello equation of motion for the nuclei similar to the one
contained in the electronic equation of motion Eq. (45). This term has to be
included in order to yield exact Car{P arrinello tra jectories and thus energy con-
servation, seee.g. Eq. (37) in Ref. 351 for a similar situation. In the caseof Born{
Oppenheimermoleculardynamics,on the contrary, this term is alwaysabsent in the
nuclear equation of motion, seeEq. (32). Thus, the particular implementation 229

underlying the comparisonbetweenCar{P arrinello and Born{Opp enheimermolec-
ular dynamics is an approximate onefrom the outset concerningthe Car{P arrinello
part; it can be argued that this was justi�ed in the early papers 281;282 where the
basicfeasibility of both the Hartree Fock{ and generalizedvalencebond{basedCar{
Parrinello moleculardynamicstechniqueswasdemonstrated285. Most importantly ,
this approximation implies that the energyE cons Eq. (48) cannot be rigorouslycon-
served in this particular version of Car{P arrinello molecular dynamics. However,
energyconservation of Econs wasusedin Ref. 229 to comparethe e�ciency and accu-
racy of thesetwo approachesto GVB ab initio molecular dynamics (using DI IS for
the Born{Opp enheimersimulations asdonein the above{givencomparison). Thus,
the �nal conclusionthat for \ : : : approachesthat utilize non{space{�xed basesto
describe the electronic wave function, Born{Opp enheimerAIMD is the method of
choice,both in terms of accuracyand speed" 229 cannot be drawn from this speci�c
comparison for the reasonsoutlined above (independently of the particular basis
set or electronic structure method used).

The toy systeminvestigatedhere(seeFig. 5 and Table 1), i.e. 8 silicon atoms in
a periodic supercell, is for the purposeof comparingdi�eren t approachesto ab initio
moleculardynamicsquite similar to the systemusedin Ref. 229, i.e. clustersof 4 or 6
sodium atoms (in addition, qualitativ ely identical results where reported in Sect. 4
for silicon clusters). Thus, it is admissible to compare the energy conservations
reported in Figs. 1 and 2 of Ref. 229 to the ones depicted here in Fig. 5 noting
that the longest simulations reported in Ref. 229 reached only 1 ps. It should be
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stressedthat the energy conservation seenin Fig. 5(top) is routinely achieved in
Car{P arrinello molecular dynamics simulations.

2.7 Electronic Structure Methods

2.7.1 Intr oduction

Up to this point, the electronic structure method to calculate the ab initio forces
r I h	 jH ej	 i was not speci�ed in detail. It is immediately clear that ab initio
molecular dynamics is not tied to any particular approach, although very accu-
rate techniques are of courseprohibitiv ely expensive. It is also evident that the
strength or weaknessof a particular ab initio molecular dynamics scheme is inti-
mately connected to the strength or weaknessof the chosen electronic structure
method. Over the years a variety of di�eren t approaches such as density func-
tional 108;679;35;472;343;36, Hartree{Fock 365;254;191;379;281;284;316;293, generalizedva-
lencebond (GVB) 282;283;228;229;230, completeactive spaceSCF (CASSCF) 566;567,
full con�guration interaction (FCI) 372, semiempirical 669;671;91;?;114;666;280 or other
approximate 473;454;551;455;170;171;26 methods werecombined with moleculardynam-
ics, and this list is certainly incomplete.

The focus of the present review clearly is Car{P arrinello molecular dynamics
in conjunction with Hohenberg{Kohn{Sham density functional theory 301;338. In
the following, only those parts of density functional theory are presented that im-
pact directly on ab initio molecular dynamics. For a deeper presentation and in
particular for a discussion of the assumptions and limitations of this approach
(both conceptually and in practice) the reader is referred to the existing excellent
literature 591;320;458;168. For simplicit y, the formulae are presented for the spin{
unpolarized or restricted special case.

Following the exposition of density functional theory, the fundamentals of
Hartree{Fock theory, which is often consideredto be the basisof quantum chem-
istry, are introduced for the samespecial case. Finally , a glimpse is given at post
Hartree{Fock methods. Again, an extensive text{b ook literature exists for these
wavefunction{based approaches to electronic structure calculations 604;418. The
very useful connection between the density{based and wavefunction{based meth-
odsgoesback to L•owdin's work in the mid �fties and is e.g. workedout in Chapt. 2.5
of Ref. 458, where Hartree{Fock theory is formulated in density{matrix language.

2.7.2 Density Functional Theory

The total ground{state energyof the interacting system of electronswith classical
nuclei �xed at positions f R I g can be obtained

min
	 0

fh	 0 jH ej 	 0 ig = min
f � i g

E KS [f � i g]

as the minimum of the Kohn{Sham energy 301;338

E KS [f � i g] = Ts[f � i g] +
Z

dr Vext (r ) n(r ) +
1
2

Z
dr VH (r ) n(r ) + Exc [n] ;(75)
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which is an explicit functional of the set of auxiliary functions f � i (r )g that sat-
isfy the orthonormalit y relation h� i j � j i = � ij . This is a dramatic simpli�cation
sincethe minimization with respect to all possiblemany{body wavefunctionsf 	 g is
replacedby a minimization with respect to a set of orthonormal one{particle func-
tions, the Kohn{Sham orbitals f � i g. The associated electronic one{body density
or charge density

n(r ) =
occX

i

f i j � i (r ) j2 (76)

is obtained from a singleSlater determinant built from the occupiedorbitals, where
f f i g are integer occupation numbers.

The �rst term in the Kohn{Sham functional Eq. (75) is the kinetic energyof a
non{in teracting referencesystem

Ts[f � i g] =
occX

i

f i

�
� i

�
��
� �

1
2

r 2

�
��
� � i

�
(77)

consisting of the samenumber of electronsexposedto the sameexternal potential
as in the fully interacting system. The secondterm comesfrom the �xed external
potential

Vext (r ) = �
X

I

Z I

jR I � r j
+

X

I <J

Z I ZJ

jR I � R J j
(78)

in which the electrons move, which comprisesthe Coulomb interactions between
electronsand nuclei and in the de�nition usedhere also the internuclear Coulomb
interactions; this term changesin the �rst place if core electrons are replaced by
pseudopotentials, seeSect. 3.1.5 for further details. The third term is the Hartree
energy, i.e. the classicalelectrostatic energyof two charge clouds which stem from
the electronic density and is obtained from the Hartree potential

VH (r ) =
Z

dr 0 n(r 0)
j r � r 0 j

; (79)

which in turn is related to the density via

r 2VH (r ) = � 4� n(r ) (80)

Poisson's equation. The last contribution in the Kohn{Sham functional, the
exchange{correlation functional Exc [n], is the most intricate contribution to the
total electronic energy. The electronic exchangeand correlation e�ects are lumped
together and basically de�ne this functional as the remainder between the exact
energyand its Kohn{Sham decomposition in terms of the three previous contribu-
tions.

The minimum of the Kohn{Sham functional is obtained by varying the energy
functional Eq. (75) for a �xed number of electrons with respect to the density
Eq. (76) or with respect to the orbitals subject to the orthonormalit y constraint,
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seee.g. the discussionfollowing Eq. (35) for a similar variational procedure. This
leadsto the Kohn{Sham equations

�
�

1
2

r 2 + Vext (r ) + VH (r ) +
� Exc [n]
� n(r )

�
� i (r ) =

X

j

� ij � j (r ) (81)

�
�

1
2

r 2 + V KS (r )
�

� i (r ) =
X

j

� ij � j (r ) (82)

H KS
e � i (r ) =

X

j

� ij � j (r ) ; (83)

which are one{electron equations involving an e�ectiv e one{particle Hamiltonian
H KS

e with the local potential V KS . Note that H KS
e neverthelessembodies the elec-

tronic many{body e�ects by virtue of the exchange{correlation potential

� Exc [n]
� n(r )

= Vxc (r ) : (84)

A unitary transformation within the spaceof the occupied orbitals leads to the
canonical form

H KS
e � i = � i � i (85)

of the Kohn{Sham equations,wheref � i g are the eigenvalues. In conventional static
density functional or \band structure" calculations this set of equationshas to be
solved self{consistently in order to yield the density, the orbitals and the Kohn{
Shampotential for the electronic ground state 487. The corresponding total energy
Eq. (75) can be written as

E KS =
X

i

� i �
1
2

Z
dr VH (r ) n(r ) + Exc [n] �

Z
dr

� Exc [n]
� n(r )

n(r ) ; (86)

where the sum over Kohn{Sham eigenvalues is the so{called \band{structure en-
ergy".

Thus, Eqs. (81){(83) together with Eqs. (39){(40) de�ne Born{Opp enheimer
molecular dynamics within Kohn{Sham density functional theory, see e.g.
Refs.232;616;594;35;679;472;36;343;344 for such implementations. The functional deriva-
tiv e of the Kohn{Sham functional with respect to the orbitals, the Kohn{Sham
force acting on the orbitals, can be expressedas

� E KS

� � ?
i

= f i H KS
e � i ; (87)

which makes clear the connection to Car{P arrinello molecular dynamics, see
Eq. (45). Thus, Eqs. (59){(60) have to be solved with the e�ectiv e one{particle
Hamiltonian in the Kohn{Sham formulation Eqs. (81){(83). In the caseof Ehren-
fest dynamics presented in Sect. 2.2, which will not be discussedin further detail
at this stage,the Runge{Grosstime{dependent generalizationof density functional
theory 258 has to be invoked instead, seee.g. Refs. 203;617;532.

Crucial to any application of density functional theory is the approximation of
the unknown exchange and correlation functional. A discussionfocussedon the
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utilization of such functionals in the framework of ab initio molecular dynamics
is for instance given in Ref. 588. Those exchange{correlation functionals that will
be considered in the implementation part, Sect. 3.3, belong to the class of the
\Generalized Gradient Approximation"

E GGA
xc [n] =

Z
dr n(r ) "GGA

xc (n(r ); r n(r )) ; (88)

where the unknown functional is approximated by an integral over a function that
dependsonly on the density and its gradient at a given point in space,seeRef. 477

and referencestherein. The combined exchange{correlation function is typically
split up into two additiv e terms " x and "c for exchangeand correlation, respectively.
In the simplest caseit is the exchangeand correlation energydensity " LD A

xc (n) of an
interacting but homogeneouselectrongasat the density givenby the \lo cal" density
n(r ) at space{point r in the inhomogeneoussystem. This simple but astonishingly
powerful approximation 320 is the famous local density approximation LDA 338

(or local spin density LSD in the spin{polarized case40), and a host of di�eren t
parameterizationsexist in the literature 458;168. The self{interaction correction 475

SIC as applied to LDA was critically assessedfor molecules in Ref. 240 with a
disappointing outcome.

A signi�cant improvement of the accuracywasachieved by introducing the gra-
dient of the density as indicated in Eq. (88) beyond the well{known straightforward
gradient expansions.Theseso{called GGAs (also denoted as \gradient corrected"
or \semilocal" functionals) extendedthe applicabilit y of density functional calcula-
tion to the realm of chemistry, seee.g. Refs. 476;42;362;477;478;479 for a few \p opular
functionals" and Refs. 318;176;577;322 for extensive tests on molecules,complexes,
and solids, respectively.

Another considerableadvancewas the successfulintroduction of \h ybrid func-
tionals" 43;44 that include to some extent \exact exchange" 249 in addition to a
standard GGA. Although such functionals can certainly be implemented within a
plane wave approach 262;128, they are prohibitiv ely time{consuming as outlined at
the end of Sect. 3.3. A more promising route in this respect are those function-
als that include higher{order powers of the gradient (or the local kinetic energy
density) in the senseof a generalizedgradient expansion beyond the �rst term.
Promising results could be achieved by including Laplacian or local kinetic energy
terms 493;192;194;662, but at this stagea sound judgment concerning their \prize /
performanceratio" has to await further scrutinizing tests. The \optimized poten-
tial method" (OPM) or \optimized e�ectiv e potentials" (OEP) are another route
to include \exact exchange" within density functional theory, seee.g. Sect. 13.6
in Ref. 588 or Ref. 251 for overviews. Here, the exchange{correlation functional
E OPM

xc = Exc [f � i g] depends on the individual orbitals instead of only on the den-
sity or its derivatives.

2.7.3 Hartr ee{Fock Theory

Hartree{Fock theory is derived by invoking the variational principle in a restricted
spaceof wavefunctions. The antisymmetric ground{state electronic wavefunction
is approximated by a single Slater determinant 	 0 = detf  i g which is constructed
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from a set of one{particle spin orbitals f  i g required to be mutually orthonormal
h i j j i = � ij . The corresponding variational minimum of the total electronic
energyH e de�ned in Eq. (2)

E HF [f  i g] =
X

i

Z
dr  ?

i (r )
�
�

1
2

r 2 + Vext (r )
�

 i (r )

+
1
2

X

ij

Z Z
dr dr 0  ?

i (r ) ?
j (r 0)

1
jr � r 0j

 i (r ) j (r 0)

+
1
2

X

ij

Z Z
dr dr 0  ?

i (r ) ?
j (r 0)

1
jr � r 0j

 j (r ) i (r 0) (89)

yields the lowest energy and the \b est" wavefunction within a one{determinant
ansatz; the external Coulomb potential Vext was already de�ned in Eq. (78). Car-
rying out the constraint minimization within this ansatz (seeEq. (36) in Sect. 2.3
for a sketch) leadsto

8
<

:
�

1
2

r 2 + Vext (r ) +
X

j

J j (r ) �
X

j

K j (r )

9
=

;
 i (r ) =

X

j

� ij  j (r ) (90)

�
�

1
2

r 2 + V HF (r )
�

 i (r ) =
X

j

� ij  j (r ) (91)

H HF
e  i (r ) =

X

j

� ij  j (r ) (92)

the Hartree{Fock integro{di�eren tial equations. In analogy to the Kohn{Sham
equations Eqs. (81){(83) theseare e�ectiv e one{particle equations that involve an
e�ectiv e one{particle Hamiltonian H HF

e , the (Hartree{) Fock operator. The set of
canonicalorbitals

H HF
e  i = � i  i (93)

is obtained similarly to Eq. (85). The Coulomb operator

J j (r )  i (r ) =
� Z

dr 0  ?
j (r 0)

1
jr � r 0j

 j (r 0)
�

 i (r ) (94)

and the exchangeoperator

K j (r )  i (r ) =
� Z

dr 0  ?
j (r 0)

1
jr � r 0j

 i (r 0)
�

 j (r ) (95)

are most easily de�ned via their action on a particular orbital  i . It is found
that upon acting on orbital  i (r ) the exchange operator for the j {th state \ex-
changes"  j (r 0) !  i (r 0) in the kernel as well as replaces i (r ) !  j (r ) in its
argument, compareto the Coulomb operator. Thus, K is a non{lo cal operator as
its action on a function  i at point r in spacerequiresthe evaluation and thus the
knowledge of that function throughout all spaceby virtue of

R
dr 0  i (r 0) : : : the

required integration. In this sensethe exchangeoperator doesnot possessa simple
classical interpretation like the Coulomb operator C, which is the counterpart of
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the Hartree potential VH in Kohn{Sham theory. The exchange operator vanishes
exactly if the antisymmetrization requirement of the wavefunction is relaxed, i.e.
only the Coulomb contribution survives if a Hartree product is used to represent
the wavefunction.

The force acting on the orbitals is de�ned

� E HF

�  ?
i

= H HF
e  i (96)

similarly to Eq. (87). At this stage, the various ab initio molecular dynamics
schemesbasedon Hartree{Fock theory are de�ned, seeEqs. (39){(40) for Born{
Oppenheimer molecular dynamics and Eqs. (59){(60) for Car{P arrinello molecu-
lar dynamics. In the caseof Ehrenfest molecular dynamics the time{dependent
Hartree{Fock formalism 162 has to be invoked instead.

2.7.4 Post Hartr ee{Fock Theories

Although post Hartree{Fock methods havea very unfavorablescalingof the compu-
tational cost asthe number of electronsincreases,a few casestudieswereperformed
with such correlated quantum chemistry techniques. For instance ab initio molec-
ular dynamics was combined with GVB 282;283;228;229;230, CASSCF 566;567, as well
as FCI 372 approaches,seealso referencestherein. It is noted in passingthat Car{
Parrinello molecular dynamicscanonly be implemented straightforwardly if energy
and wavefunction are \consistent". This is not the casein perturbation theories
such as e.g. the widely used M�ller{Plesset approach 292: within standard MP2
the energyis correct to secondorder, whereasthe wavefunction is the onegiven by
the uncorrelated HF reference.As a result, the derivative of the MP2 energywith
respect to the wavefunction Eq. (96) does not yield the correct force on the HF
wavefunction in the senseof �ctitious dynamics. Such problems are of courseab-
sent from the Born{Opp enheimerapproach to samplecon�guration space,seee.g.
Ref. 328;317;33 for MP2, density functional, and multireference CI ab initio Monte
Carlo schemes.

It should be kept in mind that the rapidly growing workload of post HF calcu-
lations, although extremely powerful in principle, limits the number of explicitely
treated electrons to only a few. The rapid development of correlated electronic
structure methods that scale linearly with the number of electrons will certainly
broaden the range of applicabilit y of this classof techniques in the near future.

2.8 Basis Sets

2.8.1 Gaussiansand Slater Functions

Having selecteda speci�c electronic structure method the next choice is related
to which basis set to use in order to represent the orbitals  i in terms of simple
analytic functions f � with well{known properties. In generala linear combination
of such basis functions

 i (r ) =
X

�

ci� f � (r ; f R I g) (97)
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is used, which represents exactly any reasonablefunction in the limit of using a
completeset of basisfunctions. In quantum chemistry, Slater{t ype basisfunctions
(STOs)

f S
m (r ) = N S

m r m x
x r m y

y r m z
z exp[� � m jr j] (98)

with an exponentially decaying radial part and Gaussian{type basis functions
(GTOs)

f G
m (r ) = N G

m r m x
x r m y

y r m z
z exp

�
� � m r 2

�
(99)

have received widespreaduse,seee.g. Ref. 292 for a conciseoverview{t ype presen-
tation. Here, Nm , � m and � m are constants that are typically kept �xed during
a molecular electronic structure calculation so that only the orbital expansionco-
e�cien ts ci� need to be optimized. In addition, �xed linear combinations of the
above{given \primitiv e" basisfunctions can be usedfor a givenangular momentum
channel m, which de�nes the \contracted" basissets.

The Slater or Gaussianbasisfunctions are in generalcentered at the positions of
the nuclei, i.e. r ! r � R I in Eq. (98){(99), which leadsto the linear combination
of atomic orbitals (LCA O) ansatz to solve di�eren tial equationsalgebraically. Fur-
thermore, their derivatives as well as the resulting matrix elements are e�cien tly
obtained by di�eren tiation and integration in real{space. However, Pulay forces
(seeSect.2.5) will result for such basisfunctions that are �xed at atoms (or bonds)
if the atoms are allowed to move, either in geometry optimization or molecular
dynamics schemes.This disadvantage can be circumvented by using freely oating
Gaussiansthat are distributed in space582, which form an originlessbasisset since
it is localized but not atom{�xed.

2.8.2 Plane Waves

A vastly di�eren t approach has its roots in solid{state theory. Here, the ubiquitous
periodicit y of the underlying lattice producesa periodic potential and thus imposes
the sameperiodicit y on the density (implying Bloch's Theorem, Born{v on Karman
periodic boundary conditions etc., seee.g. Chapt. 8 in Ref. 27). This heavily
suggeststo useplane wavesas the genericbasisset in order to expand the periodic
part of the orbitals, seeSect. 3.1.2. Plane wavesare de�ned as

f PW
G (r ) = N exp[iGr ] ; (100)

where the normalization is simply given by N = 1=
p


; 
 is the volume of the
periodic (super{) cell. Sinceplane wavesform a complete and orthonormal set of
functions they can be used to expand orbitals according to Eq. (97), where the
labeling � is simply given by the vector G in reciprocal space/ G{space(including
only thoseG{v ectorsthat satisfy the particular periodic boundary conditions). The
total electronic energy is found to have a particularly simple form when expressed
in plane waves312.

It is important to observe that plane waves are originless functions, i.e. they
do not depend on the positions of the nuclei f R I g. This implies that the Pulay
forcesEq. (67) vanish exactly even within a �nite basis(and using a �xed number
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of plane waves, seethe discussionrelated to \Pula y stress" in Sect. 2.5), which
tremendously facilitates force calculations. This also implies that plane wavesare
a very unbiasedbasisset in that they are \delocalized" in spaceand do not \fa vor"
certain atoms or regionsover others, i.e. they can be consideredas an ultimately
\balanced basis set" in the languageof quantum chemistry. Thus, the only way
to improve the qualit y of the basis is to increasethe \energy cuto� " E cut , i.e. to
increasethe largest jG j{v ector that is included in the �nite expansion Eq. (97).
This blind approach is vastly di�eren t from the traditional proceduresin quantum
chemistry that are needed in order to produce reliable basis sets 292. Another
appealing feature is that derivativesin real{spaceare simply multiplications in G{
space,and both spacescan be e�cien tly connectedvia Fast Fourier Transforms
(FFTs). Thus, one can easily evaluate operators in that spacein which they are
diagonal, seefor instance the o w charts in Fig. 6 or Fig. 7.

According to the well{known \No Free Lunch Theorem" there cannot be only
advantagesconnectedto using planewaves. The �rst point is that the pseudopoten-
tial approximation is intimately connectedto using plane waves,why so? A plane
wave basis is basically a lattice{symmetry{adapted three{dimensional Fourier de-
composition of the orbitals. This meansthat increasingly large Fourier components
areneededin order to resolve structures in real spaceon decreasinglysmall distance
scales.But already orbitals of �rst row atoms feature quite strong and rapid oscilla-
tions closeto the nuclei due to the Pauli principle, which enforcesa nodal structure
onto the wavefunction by imposing orthogonality of the orbitals. However, most
of chemistry is ruled by the valenceelectrons, whereasthe core electrons are es-
sentially inert. In practice, this meansthat the innermost electronscan be taken
out of explicit calculations. Instead they are represented by a smooth and nodeless
e�ectiv e potential, the so{called pseudopotential 296;297;484;485;139, seefor instance
Refs.487;578;221 for reviewsin the context of \solid state theory" and Refs.145;166 for
pseudopotentials asusedin \quantum chemistry". The resulting pseudowavefunc-
tion is madeassmooth aspossiblecloseto the nuclearcoreregion. This alsomeans
that properties that depend crucially on the wavefunction closeto the core cannot
be obtained straightforwardly from such calculations. In the �eld of plane wave
calculations the introduction of \soft" norm{conserving ab initio pseudopotentials
was a breakthrough both conceptually 274 and in practice 28. Another important
contribution, especially for transition metals, was the introduction of the so{called
ultrasoft pseudopotentials by Vanderbilt 661. This approaches lead to the power-
ful technique of plane wave{pseudopotential electronic structure calculations in the
framework of density functional theory 312;487. Within this particular framework
the issueof pseudopotentials is elaborated in more detail in Sect. 3.1.5.

Another severeshortcomingof plane wavesis the backsideof the medalof being
an unbiasedbasisset: there is no way to shu�e more basisfunctions into regionsin
spacewherethey aremore neededthan in other regions. This is particularly bad for
systemswith strong inhomogeneities. Such examplesare all{electron calculations
or the inclusion of semi{core states,a few heavy atoms in a seaof light atoms, and
(semi{) �nite systemssuch as surfacesor moleculeswith a large vacuum region in
order to allow the long{range Coulomb interactions to decay. This is often referred
to as the multiple length scalede�ciency of plane wave calculations.
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2.8.3 Generalized Plane Waves

An extremely appealingand elegant generalizationof the plane waveconcept 263;264

consistsin de�ning them in curved � {space

f GPW
G (� ) = N det1=2J exp[iG r (� )] (101)

det J =
�
��
�
@r i

@� j

�
��
� ;

where det J is the Jacobian of the transformation from Cartesian to curvilinear
coordinates r ! � (r ) with � = (� 1; � 2; � 3) and N = 1=

p

 as for regular plane

waves. These functions are orthonormal, form a complete basis set, can be used
for k{p oint sampling after replacing G by G + k in Eq. (101), are originless (but
nevertheless localized) so that Pulay forces are absent, can be manipulated via
e�cien t FFT techniques,and reduceto standard plane wavesin the special caseof
an Euclidean space� (r ) = r . Thus, they can be usedequally well like plane waves
in linear expansionsof the sort Eq. (65) underlying most of electronic structure
calculations. The Jacobian of the transformation is related to the Riemannian
metric tensor

gij =
3X

k =1

@� k

@r i

@� k

@r j

det J = det� 1=2 f gij g (102)

which de�nes the metric of the � {space. The metric and thus the curvilinear co-
ordinate system itself is consideredas a variational parameter in the original fully
adaptive{coordinate approach 263;264, seealso Refs. 159;275;276;277;278. Thus, a uni-
form grid in curved Riemannian spaceis non{uniform or distorted when viewed in
at Euclidean space(where gij = � ij ) such that the density of grid points (or the
\lo cal" cuto� energyof the expansionin terms of G{v ectors) is highest in regions
closeto the nuclei and lowest in vacuum regions,seeFig. 2 in Ref. 275.

Concerning actual calculations, this meansthat a lower number of generalized
plane wavesthan standard plane wavesare neededin order to achieve a given ac-
curacy 263, seeFig. 1 in Ref. 275. This allows even for all{electron approaches to
electronic structure calculations where plane wavesfail 431;497. More recently , the
distortion of the metric was frozen spherically around atoms by introducing defor-
mation functions 265;266, which leadsto a conceptcloselyconnectedto non{uniform
atom{centered meshesin real{space methods 431, seebelow. In such non{fully{
adaptive approaches using prede�ned coordinate transformations attention has to
be given to Pulay forcecontributions which have to be evaluated explicitely 265;431.

2.8.4 Wavelets

Similar to using generalized plane waves is the idea to exploit the powerful
multiscale{properties of wavelets. Since this approach requires an extensive in-
troductory discussion(seee.g. Ref. 242 for a gentle introduction) and sinceit seems
still quite far from being used in large{scale electronic structure calculations the
interested reader is referred to original papers 134;674;699;652;241;25 and the general
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wavelet literature cited therein. Wavelet{based methods allow intrinsically to ex-
ploit multiple length scaleswithout introducing Pulay forcesand can be e�cien tly
handled by fast wavelet transforms. In addition, they are also a powerful route to
linear scaling or \order{ N " methods 453;243 as �rst demonstrated in Ref. 241 with
the calculation of the Hartree potential for an all{electron uranium dimer.

2.8.5 Mixed and Augmented Basis Sets

Localized Gaussianbasis functions on the one hand and plane waveson the other
hand are certainly two extreme cases. There has been a tremendous e�ort to
combine such localizedand originlessbasisfunctions in order to exploit their mutual
strengths. This resulted in a rich collection of mixed and augmented basis sets
with very speci�c implementation requirements. This topic will not be covered
here and the interested reader is referred to Refs. 75;654;498;370;371 and references
given therein for somerecent implementations used in conjunction with ab initio
molecular dynamics.

2.8.6 Wannier Functions

An alternativ e to the plane wave basisset in the framework of periodic calculations
in solid{state theory are Wannier functions, seefor instance Sect. 10 in Ref. 27.
These functions are formally obtained from a unitary transformation of the Bloch
orbitals Eq. (114) and have the advantage that they can be exponentially localized
under certain circumstances. The so{called maximally localized generalizedWan-
nier functions 413 are the periodic analoguesof Boys' localized orbitals de�ned for
isolated systems. Recently the usefulnessof Wannier functions for numerical pur-
poseswas advocated by several groups, seeRefs. 339;184;413;10 and referencesgiven
therein.

2.8.7 Real Space Grids

A quite di�eren t approach is to leave conventional basisset approachesaltogether
and to resort to real{spacemethods wherecontin uousspaceis replacedby a discrete
spacer ! r p . This entails that the derivative operator or the entire energy ex-
pressionhasto be discretizedin someway. The high{order central{�nite di�erence
approach leadsto the expression

�
1
2

r 2 i (r ) h! 0= �
1
2

"
P N

n x = � N Cn x  i (r px + nx h; r py ; r pz )

+
P N

n y = � N Cn y  i (r px ; r py + ny h; r pz )

+
P N

n z = � N Cn z  i (r px ; r py ; r pz + nzh)

#

+ O
�
h2N +2

�
(103)

for the Laplacian which is correct up to the order h2N +2 . Here, h is the uniform
grid spacingand f Cn g are known expansioncoe�cien ts that depend on the selected
order 130. Within this scheme, not only the grid spacingh but also the order are
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disposableparametersthat can be optimized for a particular calculation. Note that
the discretization points in contin uousspacecan alsobe consideredto constitute a
sort of \�nite basisset" { despite di�eren t statements in the literature { and that
the \in�nite basis set limit" is reached as h ! 0 for N �xed. A variation on the
theme are Mehrstellen schemeswhere the discretization of the entire di�eren tial
equation and not only of the derivative operator is optimized 89.

The �rst real{spaceapproach devisedfor ab initio moleculardynamicswasbased
on the lowest{order �nite{di�erence approximation in conjunction with a equally{
spacedcubic mesh in real space109. A variety of other implementations of more
sophisticated real{space methods followed and include e.g. non{uniform meshes,
multigrid acceleration,di�eren t discretization techniques,and �nite{elemen t meth-
ods 686;61;39;130;131;632;633;431;634. Among the chief advantages of the real{space
methods is that linear scaling approaches 453;243 can be implemented in a natural
way and that the multiple{length scaleproblem can be coped with by adapting the
grid. However, the extension to such non{uniform meshesinduces the (in)famous
Pulay forces(seeSect. 2.5) if the meshmovesas the nuclei move.

3 Basic Techniques: Implemen tation within the CPMDCode

3.1 Intr oduction and Basic De�nitions

This sectiondiscussesthe implementation of the planewave{pseudopotential molec-
ular dynamics method within the CPMDcomputer code 142. It concentrates on the
basicsleaving advancedmethods to later chapters. In addition all formulas are for
the non-spin polarized case. This allows to show the essential features of a plane
wave code as well as the reasonsfor its high performance in detail. The imple-
mentation of other versionsof the presented algorithms and of the more advanced
techniques in Sect. 4 is in most casesvery similar.

There are many reviewson the pseudopotential plane wave method alone or in
connection with the Car{P arrinello algorithm. Older articles 312;157;487;591 as well
as the book by Singh 578 concentrate on the electronic structure part. Other re-
views513;472;223;224 present the planewavemethod in connectionwith the molecular
dynamics technique.

3.1.1 Unit Cell and Plane Wave Basis

The unit cell of a periodically repeated system is de�ned by the Bravais lattice
vectors a1, a2, and a3. The Bravais vectors can be combined into a three by three
matrix h = [a1; a2; a3] 459. The volume
 of the cell is calculatedasthe determinant
of h


 = deth : (104)

Further, scaledcoordinates s are introduced that are related to r via h

r = hs : (105)
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Distances in scaledcoordinates are related to distancesin real coordinates by the
metric tensor G = h t h

(r i � r j )2 = (si � sj )t G(si � sj ) : (106)

Periodic boundary conditions can be enforcedby using

r pb c = r � h
�
h � 1r

�
NINT ; (107)

where [� � � ]NINT denotes the nearest integer value. The coordinates r pb c will be
always within the box centered around the origin of the coordinate system. Recip-
rocal lattice vectors b i are de�ned as

b i � aj = 2� � ij (108)

and can also be arranged to a three by three matrix

[b1; b2; b3] = 2� (h t )� 1 : (109)

Plane waves build a complete and orthonormal basis with the above periodicit y
(seealso the section on plane wavesin Sect. 2.8)

f PW
G (r ) =

1
p



exp[iG � r ] =

1
p



exp[2� i g � s] ; (110)

with the reciprocal spacevectors

G = 2� (h t )� 1g ; (111)

whereg = [i; j; k] is a triple of integer values. A periodic function can be expanded
in this basis

 (r ) =  (r + L ) =
1

p



X

G

 (G ) exp[i G � r ] ; (112)

where  (r ) and  (G) are related by a three-dimensionalFourier transform. The
direct lattice vectors L connect equivalent points in di�eren t cells.

3.1.2 Plane Wave Expansions

The Kohn{Sham potential (seeEq. (82)) of a periodic system exhibits the same
periodicit y as the direct lattice

V KS (r ) = V KS (r + L ) ; (113)

and the Kohn{Sham orbitals can be written in Bloch form (seee.g. Ref. 27)

	( r ) = 	 i (r ; k) = exp[i k � r ] ui (r ; k) ; (114)

where k is a vector in the �rst Brillouin zone. The functions u i (r ; k) have the
periodicit y of the direct lattice

ui (r ; k) = ui (r + L ; k) : (115)
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The index i runs over all states and the stateshave an occupation f i (k) associated
with them. The periodic functions ui (r ; k) are now expanded in the plane wave
basis

ui (r ; k) =
1

p



X

G

ci (G ; k) exp[iG � r ] ; (116)

and the Kohn{Sham orbitals are

� i (r ; k) =
1

p



X

G

ci (G ; k) exp[i (G + k) � r ] ; (117)

where ci (G ; k) are complex numbers. With this expansionthe density can also be
expandedinto a plane wave basis

n(r ) =
1



X

i

Z
dk f i (k)

X

G ;G 0

c?
i (G 0; k)ci (G ; k) exp[i (G + k) � r ] (118)

=
X

G

n(G) exp[i G � r ] ; (119)

where the sum over G vectors in Eq. (119) expandsover double the range given
by the wavefunction expansion. This is one of the main advantages of the plane
wave basis. Whereasfor atomic orbital basissets the number of functions needed
to describe the density grows quadratically with the size of the system, there is
only a linear dependencefor plane waves.

3.1.3 K {Points and Cuto�s

In actual calculations the in�nite sumsover G vectorsand cellshasto be truncated.
Furthermore, we haveto approximate the integral over the Brillouin zoneby a �nite
sum over special k{p oints

Z
dk !

X

k

wk ; (120)

where wk are the weights of the integration points. Schemeson how to choosethe
integration points e�cien tly are available in the literature 30;123;435 where also an
overview 179 on the useof k{p oints in the calculation of the electronic structure of
solids can be found.

The truncation of the plane wave basis rests on the fact that the Kohn{Sham
potential V KS (G ) convergesrapidly with increasingmodulus of G . For this reason,
at each k{p oint, only G vectorswith a kinetic energylower than a given maximum
cuto�

1
2

jk + G j2 � Ecut (121)

are included in the basis. With this choice of the basis the precision of the calcu-
lation within the approximations of density functional theory is controlled by one
parameter Ecut only.
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The number of plane wavesfor a given cuto� dependson the unit cell and the
k{p oint. An estimate for the sizeof the basisat the center of the Brillouin zoneis

NPW =
1

2� 2

 E 3=2

cut ; (122)

where Ecut is in Hartree units. The basis set neededto describe the density cal-
culated from the Kohn-Sham orbitals hasa corresponding cuto� that is four times
the cuto� of the orbitals. The number of plane waves neededat a given density
cuto� is therefore eight times the number of plane wavesneededfor the orbitals.

It is a common approximation in density functional theory calculations 536;169

to use approximate electronic densities. Instead of using the full description, the
density is expandedin an auxiliary basis. An incomplete plane wave basiscan be
consideredas an auxiliary basis with special properties 371. Becauseof the �lter
property of plane waves the new density is an optimal approximation to the true
density. No additional di�culties in calculations of the energy or forces appear.
The only point to control is, if the accuracyof the calculation is still su�cien t.

Finally , sums over all unit cells in real spacehave to be truncated. The only
term in the �nal energy expressionwith such a sum is the real spacepart of the
Ewald sum (seeSect. 3.2). This term is not a major contribution to the workload
in a density functional calculation, that is the cuto� can be set rather generously.

3.1.4 Real Space Grid

A function given as a �nite linear combination of plane wavescan also be de�ned
as a set of functional valueson a equally spacedgrid in real space. The sampling
theorem (seee.g. Ref. 492) givesthe maximal grid spacingthat still allows to hold
the same information as the expansioncoe�cien ts of the plane waves. The real
spacesampling points R are de�ned

R = h Nq ; (123)

where N is a diagonal matrix with the entries 1=Ns and q is a vector of integers
ranging from 0 to Ns � 1 (s = x, y, z). To ful�ll the sampling theorem Ns has to
be bigger than 2max(gs) + 1. To be able to use fast Fourier techniques, Ns must
be decomposableinto small prime numbers (t ypically 2, 3, and 5). In applications
the smallest number Ns that ful�lls the above requirements is chosen.

A periodic function can be calculated at the real spacegrid points

f (R ) =
X

G

f (G ) exp[i G � R ] (124)

=
X

g

f (G ) exp
�
2� i

�
(h t )� 1g

�
� (hNq )

�
(125)

=
X

g

f (G ) exp
�

2�
Nx

igxqx

�
exp

�
2�
Ny

igy qy

�
exp

�
2�
Nz

igzqz

�
: (126)

The function f (G) is zero outside the cuto� region and the sum over g can be
extended over all indices in the cube � gmax

s : : : gmax
s . The functions f (R ) and
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f (G ) are related by three{dimensional Fourier transforms

f (R ) = inv FT [f (G)] (127)

f (G) = fw FT [f (R )] : (128)

The Fourier transforms are de�ned by

[inv FT [f (G )]]uv w =
N x � 1X

j =0

N y � 1X

k =0

N z � 1X

l=0

f G
j k l

exp
�
i
2�
Nx

j u
�

exp
�
i
2�
Ny

k v
�

exp
�
i
2�
Nz

l w
�

(129)

[fw FT [f (R )]] j k l =
N x � 1X

u=0

N y � 1X

v=0

N z � 1X

w=0

f R
uv w

exp
�
� i

2�
Nx

j u
�

exp
�
� i

2�
Ny

k v
�

exp
�
� i

2�
Nz

l w
�

; (130)

where the appropriate mappings of q and g to the indices

[u; v; w] = q (131)

f j; k; lg = gs if gs � 0 (132)

f j; k; lg = Ns + gs if gs < 0 (133)

have to be used. From Eqs. (129) and (130) it can be seen,that the calculation
of the three{dimensional Fourier transforms can be performed by a seriesof one
dimensional Fourier transforms. The number of transforms in each direction is
Nx Ny , Nx Nz, and Ny Nz respectively. Assuming that the one-dimensionaltrans-
forms are performed within the fast Fourier transform framework, the number of
operations per transform of length n is approximately 5n logn. This leads to an
estimate for the number of operations for the full three-dimensional transform of
5N logN , where N = NxNy Nz.

3.1.5 Pseudopotentials

In order to minimize the sizeof the plane wave basisnecessaryfor the calculation,
core electronsare replaced by pseudopotentials. The pseudopotential approxima-
tion in the realm of solid{state theory goes back to the work on orthogonalized
plane waves298 and core state projector methods 485. Empirical pseudopotentials
were used in plane wave calculations 294;703 but new developments have consid-
erably increasede�ciency and reliabilit y of the method. Pseudopotential are re-
quired to correctly represent the long range interactions of the coreand to produce
pseudo{wavefunction solutions that approach the full wavefunction outside a core
radius r c. Inside this radius the pseudopotential and the wavefunction should be as
smooth aspossible,in order to allow for a small plane wave cuto�. For the pseudo{
wavefunction this requires that the nodal structure of the valencewavefunctions
is replacedby a smooth function. In addition it is desired that a pseudopotential
is transferable 238;197, this meansthat one and the samepseudopotential can be
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usedin calculations of di�eren t chemical environment resulting in calculations with
comparableaccuracy.

A �rst major step to achieve all this conicting goals was the introduction of
"norm{conservation" 622;593. Norm{conservingpseudopotentials haveto beangular
momentum dependent. In their most generalform they are semi{local

V PP (r ; r 0) =
X

lm

Ylm (r )Vl (r )� r ;r 0Ylm (r 0) ; (134)

whereYlm are sphericalharmonics. A minimal set of requirements and a construc-
tion schemefor soft, semi{local pseudopotentials weredeveloped 274;28 . Sincethen
many variations of the original method have been proposed,concentrating either
on an improvement in softnessor in transferabilit y. Analytic representations of the
corepart of the potential 326;626;627;509 wereused. Extended norm-conservation 564

was introduced to enhancetransferabilit y and new concepts to increasethe soft-
nesswere presented 659;509;369. More information on pseudopotentials and their
construction can be found in recent review articles 487;578;221.

Originally generatedin a semi-local form, most applications usethe fully separa-
ble form. Pseudopotentials can be transformed to the separableform using atomic
wavefunctions 335;73;659. Recently 239;288 a new type of separable,norm-conserving
pseudopotentials was introduced. Local and non-local parts of thesepseudopoten-
tials have a simple analytic form and only a few parametersare neededto charac-
terize the potential. Theseparametersare globally optimized in order to reproduce
many properties of atoms and ensurea good transferabilit y.

A separablenon-local pseudopotential can be put into general form (this in-
cludesall the above mentioned types)

V PP (r ; r 0) = (Vcore (r ) + � Vlo cal (r )) � r ;r 0 +
X

k ;l

P ?
k (r )hk l Pl (r 0) : (135)

The local part has beensplit into a core ( � 1=r for r ! 1 ) and a short-ranged
local part in order to facilitate the derivation of the �nal energy formula. The
actual form of the core potential will be de�ned later. The local potential � Vlo cal

and the projectors Pk are atom-centered functions of the form

' (r ) = ' (jr � R I j) Ylm (� ; � ) ; (136)

that can be expandedin plane waves

' (r ) =
X

G

' (G) exp[iG � r ] SI (G ) Ylm (~� ; ~� ) ; (137)

R I denoteatomic positions and the so{called structure factors SI are de�ned as

SI (G ) = exp[� iG � R I ] : (138)

The functions ' (G) are calculated from ' (r ) by a Besseltransform

' (G) = 4� (� i ) l
Z 1

0
dr r 2 ' (r ) j l (Gr ) ; (139)

48



where j l are spherical Besselfunctions of the �rst kind. The local pseudopotential
and the projectors of the nonlocal part in Fourier spaceare given by

� Vlo cal (G ) =
4�



Z 1

0
dr r 2 � Vlo cal (r )j 0(Gr ) (140)

Pk (G ) =
4�
p



(� i ) l

Z 1

0
dr r 2 Pk (r ) j l (Gr ) Ylm (~� ; ~� ) ; (141)

where lm are angular momentum quantum numbers associated with projector � .

3.2 Electrostatic Energy

3.2.1 General Concepts

The electrostatic energy of a system of nuclear charges Z I at positions R I and
an electronic charge distribution n(r ) consistsof three parts: the Hartree energy
of the electrons, the interaction energy of the electrons with the nuclei and the
internuclear interactions

EES =
1
2

Z Z
dr dr 0 n(r )n(r 0)

jr � r 0j

+
X

I

Z
dr V I

core(r )n(r ) +
1
2

X

I 6= J

Z I ZJ

jR I � R J j
: (142)

The Ewald method (see e.g. Ref. 12) can be used to avoid singularities in the
individual terms when the systemsizeis in�nite. In order to achievethis a Gaussian
core charge distribution associated with each nuclei is de�ned

nI
c(r ) = �

Z I

(Rc
I )3 � � 3=2 exp

"

�
�

r � R I

Rc
I

� 2
#

: (143)

It is convenient at this point to make useof the arbitrariness in the de�nition of the
core potential and de�ne it to be the potential of the Gaussiancharge distribution
of Eq. (143)

V I
core (r ) =

Z
dr 0 nI

c (r 0)
jr � r 0j

= �
Z I

jr � R I j
erf

�
jr � R I j

Rc
I

�
; (144)

where erf is the error function. The interaction energyof this Gaussiancharge
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distributions is now added and subtracted from the total electrostatic energy

EES =
1
2

Z Z
dr dr 0 n(r )n(r 0)

jr � r 0j

+
1
2

Z Z
dr dr 0 nc(r )nc(r 0)

jr � r 0j

+
Z Z

dr dr 0 nc(r )n(r 0)
jr � r 0j

+
X

I

Z
dr V I

cor e(r )n(r ) +
1
2

X

I 6= J

Z I ZJ

jR I � R J j

�
1
2

Z Z
dr dr 0 nc(r )nc(r 0)

jr � r 0j
; (145)

where nc(r ) =
P

I nI
c(r ). The �rst four terms can be combined to the electrostatic

energy of a total charge distribution n tot (r ) = n(r ) + nc(r ). The remaining terms
are rewritten as a double sum over nuclei and a sum over self{energy terms of the
Gaussiancharge distributions

EES =
1
2

Z Z
dr dr 0 ntot (r )ntot (r 0)

jr � r 0j

+
1
2

X

I 6= J

Z I ZJ

jR I � R J j
erfc

2

4 jR I � R J j
q

Rc
I

2 + Rc
J

2

3

5 �
X

I

1
p

2�

Z 2
I

Rc
I

; (146)

where erfc denotesthe complementary error function.

3.2.2 Periodic Systems

For a periodically repeated system the total energy per unit cell is derived from
the above expressionby using the solution to Poisson'sequation in Fourier space
for the �rst term and make useof the quick convergenceof the secondterm in real
space.The total charge is expandedin plane waveswith expansioncoe�cien ts

ntot (G ) = n(G) +
X

I

nI
c (G )SI (G ) (147)

= n(G) �
1



X

I

Z Ip
4�

exp
�
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1
2

G2Rc
I

2
�

SI (G ) : (148)

This leadsto the electrostatic energy for a periodic system

EES = 2� 

X

G 6=0

jntot (G )j2

G2 + Eovrl � Eself ; (149)

where

Eovrl =
X 0

I ;J

X

L

Z I ZJ

jR I � R J � L j
erfc

2

4 jR I � R J � L j
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5 (150)
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and

Eself =
X

I

1
p

2�

Z 2
I

Rc
I

: (151)

Here, the sumsexpandover all atoms in the simulation cell, all direct lattice vectors
L , and the prime in the �rst sum indicates that I < J is imposedfor L = 0.

3.2.3 Cluster Boundary Conditions

The possibility to usefast Fourier transforms to calculate the electrostatic energy
is one of the reasonsfor the high performance of plane wave calculations. How-
ever, plane wave basedcalculations imply periodic boundary conditions. This is
appropriate for crystal calculations but very unnatural for moleculeor slab calcu-
lations. For neutral systemsthis problem is circumvented by useof the supercell
method. Namely, the molecule is periodically repeated but the distance between
each moleculeand its periodic imagesis so large that their interaction is negligible.
This procedureis somewhatwasteful but can lead to satisfactory results.

Handling charged molecular systems is, however, considerably more di�cult,
due to the long range Coulomb forces. A charged periodic system has in�nite
energyand the interaction betweenimagescannot really be completely eliminated.
In order to circumvent this problem several solutions have been proposed. The
simplest �x-up is to add to the system a neutralizing background charge. This
is achieved trivially as the G = 0 term in Eq. (149) is already eliminated. This
leads to �nite energiesbut does not eliminate the interaction between the images
and makes the calculation of absolute energiesdi�cult. Other solutions involve
performing a set of di�eren t calculations on the systemsuch that extrapolation to
the limit of in�nitely separatedimagesis possible. This procedure is lengthy and
one cannot use it easily in molecular dynamics applications. It has been shown,
that it is possible to estimate the correction to the total energy for the removal
of the image charges 378. Still it seemsnot easy to incorporate this scheme into
the frameworks of molecular dynamics. Another method 60;702;361 works with the
separationof the long and short rangeparts of the Coulomb forces. In this method
the low{order multip ole moments of the charge distribution are separatedout and
handled analytically . This method was used in the context of coupling ab initio
and classicalmolecular dynamics 76.

The long-range forces in Eq. (146) are contained in the �rst term. This term
can be written

1
2

Z Z
dr dr 0 ntot (r )ntot (r 0)

jr � r 0j
=

1
2

Z
dr VH (r )ntot (r ) ; (152)

where the electrostatic potential VH (r ) is the solution of Poisson'sequation (see
Eq. (80)). There are two approaches to solve Poisson'sequation subject to the
boundary conditions VH (r ) ! 0 for r ! 1 implemented in CPMD. Both of them
rely on fast Fourier transforms, thus keepingthe sameframework asfor the periodic
case.

The �rst method is dueto Hockney 300 and was�rst applied to density functional
planewavecalculationsin Ref. 36. In the following outline, for the sakeof simplicit y,
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a one-dimensionalcaseis presented. The charge density is assumedto be non-zero
only within an interval L and sampledon N equidistant points. Thesepoints are
denoted by xp. The potential can then be written

VH (xp) =
L
N

1X

p0= �1

G(xp � xp0)n(xp0) (153)

=
L
N

NX

p0=0

G(xp � xp0)n(xp0) (154)

for p = 0; 1; 2; : : :N , where G(xp � xp0) is the corresponding Green's function. In
Hockney's algorithm this equation is replacedby the cyclic convolution

~VH (xp) =
L
N

2N +1X

p0=0

~G(xp � xp0)~n(xp0) (155)

where p = 0; 1; 2; : : :2N + 1, and

~n(xp) =
�

n(xp) 0 � p � N
0 N � p � 2N + 1 (156)

~G(xp) = G(xp) � (N + 1) � p � N (157)

~n(xp) = ~n(xp + L) (158)
~G(xp) = ~G(xp + L) (159)

The solution ~VH (xp) can be obtained by a seriesof fast Fourier transforms and has
the desiredproperty

~VH (xp) = VH (xp) for 0 � p � N : (160)

To remove the singularity of the Green's function at x = 0, G(x) is modi�ed for
small x and the error is corrected by using the identit y

G(x) =
1
x

erf
�

x
r c

�
+

1
x

erfc
�

x
r c

�
; (161)

where r c is chosensuch, that the short-rangedpart can be accurately described by
a plane wave expansionwith the density cuto�. In an optimized implementation
Hockney's method requires the double amount of memory and two additional fast
Fourier transforms on the box of doublesize(seeFig. 6 for a o w chart). Hockney's
method canbegeneralizedto systemswith periodicit y in one(wires) and two (slabs)
dimensions. It was pointed out 173 that Hockney's method givesthe exact solution
to Poisson'sequation for isolated systemsif the boundary condition (zero density
at the edgesof the box) are ful�lled.

A di�eren t, fully reciprocal spacebasedmethod, that can be seenasan approx-
imation to Hockney's method, was recently proposed393. The �nal expressionfor
the Hartree energyis alsobasedon the splitting of the Green'sfunction in Eq. (161)

EES = 2� 

X

G

V MT
H (G )n?

tot (G ) + Eovrl � Eself : (162)
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EH = 

N x N y N z

P
R VH (R )ntot (R )

VH (G ) VH (R )

~VH (R )~VH (G ) = �( G)~ntot (G )

~ntot (G ) ~ntot (R )

ntot (R )ntot (G )

�

�

�

�

�

�

�

�

fw FT

inv FT

fw FT

inv FT

Figure 6. Flow chart for the calculation of long-ranged part of the electrostatic energy using the
metho d by Hockney 300 . The part inside the dashed box is calculated most e�cien tly with the
pro cedure outlined by Eastwood and Brownrigg 173 .

The potential function is calculated from two parts,

V MT
H (G ) = �VH (G ) + ~VH (G ) ; (163)

where ~VH (G ) is the analytic part, calculated from a Fourier transform of erfc

~VH (G ) =
4�
G2

�
1 � exp

�
�

G2r 2
c

4

��
n(G) (164)

and �VH (G ) is calculated from a discrete Fourier transform of the Green's function
on an appropriate grid. The calculation of the Green's function can be doneat the
beginning of the calculation and has not to be repeated again. It is reported 393

that a cuto� of ten to twenty percent higher than the oneemployed for the charge
density givesconvergedresults. The sametechnique canalsobe applied for systems
that are periodic in one and two dimensions394.

If the boundary conditions are appropriately chosen,the discreteFourier trans-
forms for the calculation of �VH (G ) can be performed analytically 437. This is
possiblefor the limiting casewhere r c = 0 and the boundary conditions are on a
sphereof radius R for the cluster. For a one-dimensionalsystemwe choosea torus
of radius R and for the two-dimensionalsystema slab of thicknessZ . The electro-
static potential for these systemsare listed in Table 2, where Gxy =

�
g2

x + g2
y

� 1=2

and Jn and K n are the Besselfunctions of the �rst and secondkind of integer order
n.

Hockney's method requiresa computational box such that the chargedensity is
negligible at the edges.This is equivalent to the supercell approach 510. Practical
experiencetells that a minimum distanceof about 3 �A of all atoms to the edgesof
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Table 2. Fourier space formulas for the Hartree energy, seetext for de�nitions.

Dim. periodic (G2=4� )VH (G ) VH (0)
0 { (1 � cos[R G]) n(G) 2� R2n(0)
1 z (1 + R (Gxy J1(RGxy ) K 0(Rgz)

� gzJ0(RGxy ) K 1(Rgz)) ) n(G) 0
2 x, y (1 � (� 1)gz exp[� GZ=2]) n(G) 0
3 x, y, z n(G) 0

the box is su�cien t for most systems.The Green's function is then applied to the
chargedensity in a box double this size. The Green'sfunction has to be calculated
only onceat the beginning of the calculation. The other methods presented in this
chapter require a computational box of double the sizeof the Hockney method as
they areapplying the arti�cially periodic Green'sfunction within the computational
box. This canonly be equivalent to the exact Hockney method if the box is enlarged
to double the size. In plane wave calculations computational costs grow linearly
with the volumeof the box. ThereforeHockney's method will prevail over the others
in accuracy, speed, and memory requirements in the limit of large systems. The
direct Fourier spacemethods have advantagesthrough their easy implementation
and for small systems, if not full accuracy is required, i.e. if they are used with
smaller computational boxes. In addition, they can be of great use in calculations
with classicalpotentials.

3.3 Exchangeand Correlation Energy

Exchangeand correlation functionals implemented in the CPMDcode are of the local
type with gradient corrections. These type of functionals can be written as (see
also Eqs. (88) and (84))

Exc =
Z

dr "xc(n; r n) n(r ) = 

X

G

"xc (G )n?(G ) (165)

with the corresponding potential

Vxc (r ) =
@Fxc

@n
�

X

s

@
@r s

�
@Fxc

@(@sn)

�
; (166)

where Fxc = "xc (n; r n)n and @sn is the s-component of the density gradient.
Exchange and correlation functionals have complicated analytical forms that

give rise to high frequency components in " xc (G ). Although these high frequency
components do not enter the sum in Eq. (165) due to the �lter e�ect of the density,
they a�ect the calculation of " xc . As the functionals areonly local in real space,not
in Fourier space,they haveto be evaluated on a real spacegrid. The function " xc (G )
can then be calculated by a Fourier transform. Therefore the exact calculation of
Exc would require a grid with in�nite resolution. However, the high frequency
components are usually very small and even a moderate grid givesaccurateresults.
The use of a �nite grid results in an e�ectiv e rede�nition of the exchange and
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correlation energy

Exc =



Nx Ny Nz

X

R

"xc (n; r n)(R )n(R ) = 

X

G

~"xc (G )n(G) ; (167)

where ~" xc (G ) is the �nite Fourier transform of " xc (R ). This de�nition of Exc

allows the calculation of all gradients analytically . In most applications the real
spacegrid used in the calculation of the density and the potentials is also used
for the exchangeand correlation energy. Grids with higher resolution can be used
easily. The density is calculated on the new grid by useof Fourier transforms and
the resulting potential is transfered back to the original grid. With this procedure
the di�eren t grids do not have to be commensurate.

The above rede�nition has an undesired side e�ect. The new exchange and
correlation energy is no longer translationally invariant. Only translations by a
multiple of the grid spacing do not change the total energy. This introduces a
small modulation of the energy hyper surface 685, known as "ripples". Highly
accurate optimizations of structures and the calculation of harmonic frequencies
can be a�ected by the ripples. Using a densergrid for the calculation of E xc is the
only solution to avoid theseproblems.

The calculation of a gradient corrected functional within the plane wave frame-
work can be conductedusing Fourier transforms 685. The o wchart of the calcula-
tion is presented in Fig. 7. With the use of Fourier transforms the calculation of
secondderivativesof the charge density is avoided, leading to a numerically stable
algorithm. To this end the identit y

@Fxc

@(@sn)
=

@Fxc

@jr nj
@sn
jr nj

(168)

is used.
This is the place to say somewords on functionals that include exact exchange.

As mentioned in Sect. 2.7 this type of functional has been very popular recently
and improvements of results over GGA{t ype density functionals for many systems
and properties have been reported. However, the calculation of the Hartree{Fock
exchange causesa considerableperformance problem in plane wave calculations.
The Hartree{Fock exchangeenergyis de�ned as 604

EHFX =
X

ij

Z Z
dr dr 0� ij (r )� ij (r 0)

jr � r 0j
; (169)

where

� ij (r ) = � i (r )� j (r ): (170)

From this expressionthe wavefunction force is easily derived and can be calculated
in Fourier space

1
f i

@EHFX

@c?
i (G )

=
X

j

X

G 0

V ij
HFX (G � G 0)cj (G 0) : (171)

The force calculation is best performed in real space,whereasthe potential is cal-
culated in Fourier space.For a system with Nb electronic states and N real space
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Exc = 

N x N y N z

P
R "xc (R )n(R )

Vxc (R ) = @F xc
@n (R ) +

P
s @sAs(R )

@sAs(R )

@As (G ) = iG sAs(G )

As(G )

As(R ) = @F xc
@jr n j

@s n
jr n j

@F xc
@jr n j

@F xc
@n

"xc

jr nj = (
P

s(@sn(R ))2)1=2

@sn(R )

@sn(G) = iG sn(G)

n(G)

�

�

�

�

�

��

�

�

�

�

�

�

3 � inv FT

3 � fw FT

3 � inv FT

Figure 7. Flow chart for the calculation of the energy and potential of a gradient corrected ex-
change and correlation functional.

grid points, a total of 5N 2
b three{dimensional transforms are needed,resulting in

approximately 25N 2
b N logN operations neededto perform the calculation. This

has to be compared to the 15NbN logN operations neededfor the other Fourier
transforms of the charge density and the application of the local potential and the
4N 2

b N operations for the orthogonalization step. In calculations dominated by the
Fourier transforms an additional factor of at leastNb is needed.If on the other hand
orthogonalization dominatesan increasein computer time by a factor of 5 logN is
expected. Therefore, at least an order of magnitude more computer time is needed
for calculations including exact exchangecomparedto ordinary density functional
calculations. Consequently , hybrid functionals will only be usedin exceptionalcases
together with plane waves262;128.
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3.4 Total Energy, Gradients, and StressTensor

3.4.1 Total Energy

Molecular dynamics calculations with interaction potentials derived from density
functional theory require the evaluation of the total energy and derivatives with
respect to the parametersof the Lagrangian. In this section formulas are given in
Fourier spacefor a periodic system. The total energycan be calculated asa sum of
kinetic, external (local and non-local pseudopotential), exchange and correlation,
and electrostatic energy (to be comparedwith Eq. (75))

E total = Ekin + E PP
lo cal + E PP

nonlo cal + Exc + EES : (172)

The individual terms are de�ned by

Ekin =
X

k

wk

X

i

X

G

1
2

f i (k) jG + kj2 jci (G ; k)j2 (173)

E PP
lo cal =

X

I

X

G

� V I
lo cal (G ) SI (G )n?(G ) (174)

E PP
nonlo cal =

X

k

wk

X

i

f i (k)
X

I

X

�;� 2 I

�
F �

I ;i (k)
� ?

hI
�� F �

I ;i (k) (175)

Exc = 

X

G

� xc (G )n?(G ) (176)

EES = 2� 

X

G 6=0

jntot (G )j2

G2
+ Eovrl � Eself : (177)

The overlap betweenthe projectors of the non-local pseudopotential and the Kohn{
Sham orbitals has beenintroduced in the equation above

F �
I ;i (k) =

1
p




X

G

P I
� (G ) SI (G + k) c?

i (G ; k) : (178)

An alternativ e expression,using the Kohn{Sham eigenvalues� i (k) can alsobe used

E total =
X

k

wk

X

i

f i (k)� i (k)

� 

X

G

(Vxc (G ) � "xc (G )) n?(G )

� 2� 

X

G 6=0

jn(G)j2 � jnc(G )j2

G2 + Eovrl � Eself

+� E tot ; (179)

to be comparedto Eq. (86). The additional term � E tot in Eq. (179) is neededto
have an expressionfor the energy that is quadratic in the variations of the charge
density, as it is true for Eq. (172). Without the correction term, which is zero for
the exact charge density, small di�erences between the computed and the exact
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density could give rise to large errors in the total energy 129. The correction energy
can be calculated from

� E tot = � 2� 

X

G 6=0

�
nin (G )

G2 �
nout (G )

G2

�
(nout (G ))?

� 

X

G

�
V in

xc (G ) � V out
xc (G )

�
(nout (G ))?; (180)

wheren in and nout are the input and output chargedensitiesand V in
xc and V out

xc the
corresponding exchangeand correlation potentials. This term leadsto the so{called
\non{self{consistency correction" of the force, introduced in Eq. (68).

The useof an appropriate k{p oint meshis the most e�cien t method to calculate
the total energy of a periodic system. Equivalent, although not as e�cien t, the
calculation can be performed using a supercell consisting of replications of the
unit cell and a single integration point for the Brillouin zone. In systemswhere
the translational symmetry is broken, e.g. disorder systems,liquids, or thermally
excited crystals, periodic boundary conditions can still be used if combined with
a supercell approach. Many systemsinvestigated with the here described method
fall into these categories,and therfore most calculations using the Car-Parrinello
molecular dynamicsapproach areusing supercellsand a singlek{p oint "in tegration
scheme". The only point calculated is the center of the Brillouin zone (�{ point
;k = 0). For the remainder of this chapter, all formulas are given for the �{p oint
approximation.

3.4.2 Wavefunction Gradient

Analytic derivativesof the total energywith respect to the parametersof the calcu-
lation areneededfor stablemolecular dynamicscalculations. All derivativesneeded
are easily accessiblein the plane wave pseudopotential approach. In the following
Fourier spaceformulas are presented

1
f i

@E total

@c?
i (G )

=
1
2

G2 ci (G )

+
X

G 0

V ?
lo c(G � G 0)ci (G 0)

+
X

I

X

�;�

�
F �

I ;i

� ?
hI

�� P I
� (G )SI (G ) ; (181)

where Vlo c is the local potential

Vlo c(G ) =
X

I

� V I
lo cal (G )SI (G ) + Vxc (G ) + 4�

ntot (G )
G2

: (182)

Wavefunction gradients are neededin optimization calculations and in the Car-
Parrinello molecular dynamics approach.
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3.4.3 Gradient for Nuclear Positions

The derivative of the total energy with respect to nuclear positions is neededfor
structure optimization and in molecular dynamics, that is

@E total

@R I ;s
=

@E PP
lo cal

@R I ;s
+

@E PP
nonlo cal

@R I ;s
+

@EES

@R I ;s
; (183)

as the kinetic energy Ekin and the exchange and correlation energy Exc do not
depend directly on the atomic positions, the relevant parts are

@E PP
lo cal

@R I ;s
= � 


X

G

iG s � V I
lo cal (G ) SI (G ) n?(G ) (184)
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I ;i
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(185)

@EES

@R I ;s
= � 


X

G 6=0

iG s
n?

tot (G )
G2 nI

c (G ) SI (G ) +
@Eovrl

@R I ;s
: (186)

The contribution of the projectors of the non-local pseudopotentials is calculated
from

@F �
I ;i

@R I ;s
= �

1
p




X

G

iG s P I
� (G ) SI (G ) c?

i (G ; k) : (187)

Finally , the real spacepart contribution of the Ewald sum is
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� (R I ;s � R J;s � L s) : (188)

The selfenergyEself is independent of the atomic positions and doesnot contribute
to the forces.

3.4.4 Internal StressTensor

For calculations where the supercell is changed (e.g. the combination of the Car{
Parrinello method with the Parrinello{Rahman approach 201;55) the electronic in-
ternal stresstensor is required. The electronic part of the internal stresstensor is
de�ned as 440;441 (seealso Sect. 4.2.3)

� uv = �
1



X

s

@E total

@hus
h t

sv : (189)
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An important identit y for the derivation of the stresstensor is

@

@huv

= 
( h t )� 1
uv : (190)

The derivativesof the total energywith respect to the components of the cell matrix
h can be performed on every part of the total energy individually ,

@E total

@huv
=

@Ekin

@huv
+

@E PP
lo cal

@huv
+

@E PP
nonlo cal

@huv
+

@Exc

@huv
+

@EES

@huv
: (191)

Using Eq. (190) extensively, the derivativescanbe calculated for the caseof a plane
wave basis in Fourier space202,
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Finally , the derivative of the overlap contribution to the electrostatic energy is
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The local part of the pseudopotential � V I
lo cal (G ) and the nonlocal projector func-

tions depend on the cell matrix h through the volume, the Besseltransform integral
and the sphericalharmonicsfunction. Their derivativesare lengthy but easyto cal-
culate from their de�nitions Eqs. (140) and (141)

@� V I
lo cal (G )
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= � � V I
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+
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3.4.5 Non-linear Core Correction

The successof pseudopotentials in density functional calculations relies on two
assumptions.The transferabilit y of the coreelectronsto di�eren t environments and
the linearization of the exchangeand correlation energy. The secondassumption is
only valid if the frozencoreelectronsand the valencestate do not overlap. However,
if there is signi�cant overlap between core and valencedensities, the linearization
will lead to reducedtransferabilit y and systematicerrors. The most straightforward
remedy is to include \semi{core states" in addition to the valenceshell, i.e. one
more inner shell (which is from a chemicalviewpoint an inert \core level") is treated
explicitely. This approach, however, leadsto quite hard pseudopotentials which call
for large plane wave cuto�s. Alternativ ely, it was proposedto treat the non{linear
parts of the exchange and correlation energy E xc explicitely 374. This idea does
not lead to an increaseof the cuto� but amelioratesthe above{mentioned problems
quite a bit. To achieve this, Exc is calculated not from the valencedensity n(R )
alone, but from a modi�ed density

~n(R ) = n(R ) + ~ncore (R ) ; (200)

where ~ncor e(R ) denotesa density that is equal to the core density of the atomic
referencestate in the region of overlap with the valencedensity

~ncore (r ) = ncore (r ) if r > r 0 ; (201)

with the vanishing valencedensity inside r 0. Close to the nuclei a model density
is chosenin order to reduce the cuto� for the plane wave expansion. Finally , the
two densities and their derivatives are matched at r 0. This procedure leads to a
modi�ed total energyin Eq. (176), where E xc is replaceby

Exc = Exc (n + ~ncore ) ; (202)
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and the corresponding potential is

Vxc = Vxc (n + ~ncore ) : (203)

The sum of all modi�ed core densities

~ncor e(G ) =
X

I

~nI
cor e(G )SI (G ) (204)

dependson the nuclear positions, leading to a new contribution to the forces
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and to the stresstensor
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@huv
=

X

I

X

G

V ?
xc (G )

@~nI
core (G )
@huv

SI (G ) : (206)

The derivativeof the corechargewith respect to the cell matrix canbe performedin
analogy to the formula given for the local potential. The method of the non-linear
core correction dramatically improvesresults on systemswith alkali and transition
metal atoms. For practical applications, one should keep in mind that the non-
linear core correction should only be applied together with pseudopotentials that
were generatedusing the sameenergyexpression.

3.5 Energy and Force Calculations in Practice

In Sect. 3.4 formulas for the total energy and forces were given in their Fourier
spacerepresentation. Many terms are in fact calculated most easily in this form,
but some terms would require double sums over plane waves. In particular, the
calculation of the charge density and the wavefunction gradient originating from
the local potential

X

G 0

V ?
lo c(G � G 0)ci (G 0) : (207)

The expressionin Eq. (207) is a convolution and can be calculated e�cien tly by a
seriesof Fourier transforms. The o w charts of this calculations are presented in
Fig. 8. Both of thesemodulescontain a Fourier transform of the wavefunctionsfrom
G spaceto the real spacegrid. In addition, the calculation of the wavefunction
forces requires a back transform of the product of the local potential with the
wavefunctions, performed on the real spacegrid, to Fourier space. This leads to
a number of Fourier transforms that is three times the number of states in the
system. If enough memory is available on the computer the secondtransform of
the wavefunctionsto the grid can be avoided if the wavefunctionsare stored in real
spaceduring the computation of the density. These modules are further used in
the o w chart of the calculation of the local potential in Fig. 9. Additional Fourier
transforms are needed in this part of the calculation. However, the number of
transforms does not scalewith the number of electrons in the system. Additional
transforms might be hidden in the module to calculate the exchangeand correlation
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Figure 8. Flow chart for the calculation of the charge density (on the left) and the force on the
wavefunction from the local potential (on the righ t). The charge density calculation requires N b
(number of states) three dimensional Fourier transforms. For the application of the local potential
two Fourier transforms per state are needed. If enough memory is available the �rst transform can
be avoided if the wavefunction on the real space grid are stored during the density calculation .

potential (seealsoFig. 7) and the Poissonsolver in caseswhen the Hockney method
is used(seeFig. 6).

The calculation of the total energy, together with the local potential is shown
in Fig. 10. The overlap betweenthe projectors of the nonlocal pseudopotential and
the wavefunctions calculated in this part will be reused in the calculation of the
forceson the wavefunctions. There are three initialization stepsmarked in Fig. 9.
Step one has only to be performed at the beginning of the calculation, as the
quantities g and Eself are constants. The quantities calculated in step two depend
on the absolute value of the reciprocal spacevectors. They have to be recalculated
whenever the box matrix h changes. Finally , the variables in step three depend
on the atomic positions and have to be calculated after each changeof the nuclear
positions. The o w charts of the calculation of the forcesfor the wavefunctionsand
the nuclei are shown in Figs. 11 and 12.

3.6 Optimizing the Kohn-Sham Orbitals

Advancesin the application of plane wave basedelectronic structure methods are
closelyrelated to improved methods for the solution of the Kohn{Sham equations.
There are now two di�eren t but equally successfulapproachesavailable. Fix{p oint
methods basedon the diagonalization of the Kohn{Sham matrix follow the more
traditionally ways that go back to the roots of basisset methods in quantum chem-
istry. Direct nonlinear optimization approachessubject to a constraint were initi-
ated by the successof the Car{P arrinello method. The following sectionsreview
someof thesemethods, focusingon the special problems related to the plane wave
basis.
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Figure 9. Flow chart for the calculation of the local potential from the Kohn{Sham orbitals.
This module calculates also the charge density in real and Fourier space and the exchange and
correlation energy, Hartree energy, and local pseudopotential energy.

3.6.1 Initial Guess

The initial guessof the Kohn{Sham orbitals is the �rst step to a successfulcalcu-
lation. One would like to introduce as much knowledge as possible into the �rst
step of the calculation, but at the sametime the procedureshould be generaland
robust. One should also take care not to introduce arti�cal symmetries that may
be preserved during the optimization and lead to false results. The most general
initialization might be, choosing the wavefunction coe�cien ts from a random dis-
tribution. It makes senseto weight the random numbers by a function reecting
the relative importance of di�eren t basis functions. A good choice is a Gaussian
distribution in G2. This initialization schemeavoids symmetry problems but leads
to energiesfar o� the �nal results and especially highly tuned optimization methods
might have problems.

A more educatedguessis to use a superposition of atomic densities and then
diagonalizethe Kohn{Sham matrix in an appropriate basis. This basiscan be the
full plane wave basis or just a part of it, or any other reasonablechoice. The
most natural choice of atomic densitiesand basissets for a plane wave calculation
are the pseudoatomic density and the pseudoatomic wavefunction of the atomic
referencestate usedin the generationof the pseudopotential. In the CPMDcode this
is one possibility, but often the data neededare not available. For this casethe
default option is to generatea minimal basisout of Slater functions (seeEq. (98) in
Sect.2.8) and combine them with the help of atomic occupation numbers(gathered
using the Aufbau principle) to an atomic density. From the superposition of these
densitiesa Kohn{Sham potential is constructed. The Slater orbitals are expanded
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Figure 10. Flow chart for the calculation of the local potential and total energy. Initialization
steps are mark ed with numbers. Step 2 has to be repeated whenever the size of the unit cell
changes. Step 3 has to be repeated whenever nuclear positions have changed.

in planewavesand using the sameroutines asin the standard code the Kohn{Sham
and overlap matrices are calculated in this basis. The generaleigenvalue problem is
solved and the eigenfunctionscan easily be expressedin the plane wave basis that
are in turn usedasthe initial wavefunctionsto the optimization routines. Similarly ,
a givenplanewaverepresentation of the total wavefunction canbeprojectedonto an
auxiliary set of atom{centered functions. This opensup the possibility to perform
population and bond{order analyses(following for instancethe schemesof Mullik en
or Mayer) in plane wave{pseudopotential calculations 537.

3.6.2 Preconditioning

Optimizations in many dimensionsare often hamperedby the appearanceof di�er-
ent length scales. The introduction of a metric that brings all degreesof freedom
onto the same length scale can improve convergenceconsiderably. The applica-
tion of such a metric is called "preconditioning" and is usedin many optimization
problems. If the variables in the optimization are decoupledthe preconditioning
matrix is diagonal and becomescomputationally tractable even for very large sys-
tems. Fortunately, this is to a large degreethe casefor a plane wave basisset. For
large G vectors the Kohn{Sham matrix is dominated by the kinetic energywhich
is diagonal in the plane wave representation. Based on this observation e�cien t
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Figure 11. Flow chart for the calculation of the forces on the wavefunctions. Notice that the
calculation of the overlap terms F �

I ;i is done outside the loop over wavefunctions. Besides the
wavefunctions and the local potential, the structure factors and the pro jectors of the nonlo cal
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Figure 12. Flow chart for the calculation of the forces on the nuclei.

preconditioning schemeshave beenproposed616;610;308;344. The preconditioner im-
plemented in the CPMDcode is based on the diagonal of the Kohn{Sham matrix
HG ;G 0, which is given by

K G ;G 0 = H G ;G � G ;G 0 if jG j � Gc

K G ;G 0 = H G c ;G c � G ;G 0 if jG j � Gc
; (208)
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whereGc is a free parameter that can be adjusted to accelerateconvergence.How-
ever, it is found that the actual choiceis not very critical and for practical purposes
it is convenient not to �x Gc, but to use an universal constant of 0.5 Hartree for
HG c ;G c that in turn de�nes Gc for each system.

3.6.3 Dir ect Methods

The successof the Car{P arrinello approach started the interest in other methods
for a direct minimization of the Kohn{Sham energy functional. These methods
optimize the total energyusing the gradient derived from the Lagrangefunction

L = E KS (f � i g) �
X

ij

� ij (h� i j� j i � � ij ) (209)

@L
@� i

= H e� i �
X

j

h� i jH ej� j i � j : (210)

Optimization methods di�er in the way orbitals are updated. A steepest descent
basedscheme

ci (G )  ci (G ) + � K � 1
G ;G  i (G ) (211)

canbecombined with the preconditioner and a line search option to �nd the optimal
step size � . Nearly optimal � 's can be found with an interpolation based on a
quadratic polynomial. In Eq. (211)  i (G ) denote the Fourier components of the
wavefunction gradient.
Improved convergencecan be achieved by replacing the steepest descent step with
a search direction basedon conjugate gradients 594;232;616;23;499

ci (G )  ci (G ) + �h i (G ) : (212)

The conjugate directions are calculated from

h(n )
i (G ) =

(
g(n )

i (G ) n = 0
g(n )

i (G ) +  (n � 1) hn � 1
i (G ) n = 1; 2; 3; : : :

(213)

where

g(n )
i (G ) = K � 1

G ;G  (n )
i (G ) (214)

 (n ) =
P

i hg
(n +1)
i (G )jg(n +1)

i (G )i

hg(n )
i (G )jg(n )

i (G )i
: (215)

A very e�cien t implementation of this method 616 is based on a band by band
optimization. A detailed description of this method can also be found in Ref. 472.

The direct inversion in the iterativ e subspace(DI IS) method 495;144;308 is a
very successfulextrapolation method that can be usedin any kind of optimization
problems. In quantum chemistry the DI IS scheme has been applied to wavefunc-
tion optimizations, geometryoptimizations and in post{Hartree{F ock applications.
DI IS usesthe information of n previous steps. Together with the position vectors
c(k )

i (G ) an estimate of the error vector e(k )
i (G ) for each previous step k is stored.
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The best approximation to the �nal solution within the subspacespannedby the
n stored vectors is obtained in a least squaresenseby writing

c(n +1)
i (G ) =

nX

k =1

dk c(k )
i (G ) ; (216)

where the dk are subject to the restriction
nX

k =1

dk = 1 (217)

and the estimated error becomes

e(n +1)
i (G ) =

nX

k =1

dk e(k )
i (G ) : (218)

The expansioncoe�cien ts dk are calculated from a system of linear equations
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where the bk l are given by

bk l =
X

i

hek
i (G )jel

i (G )i : (220)

The error vectorsarenot known, but canbeapproximated within a quadratic model

e(k )
i (G ) = � K � 1

G ;G  (k )
i (G ) : (221)

In the sameapproximation, assumingK to be a constant, the new trial vectorsare
estimated to be

ci (G ) = c(n +1)
i (G ) + K � 1

G ;G  (n +1)
i (G ) ; (222)

where the �rst derivative of the energydensity functional is estimated to be

 (n +1)
i (G ) =

nX

k =1

dk  (k )
i (G ) : (223)

The methods described in this section produce new trail vectors that are not or-
thogonal. Therefore an orthogonalization step has to be added before the new
charge density is calculated

ci (G )  
X

k

cj (G )X j i : (224)

There are di�eren t choices for the rotation matrix X that lead to orthogonal or-
bitals. Two of the computationally convenient choicesare the L•owdin orthogonal-
ization

X j i = S� 1=2
j i (225)
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and a matrix form of the Gram{Schmidt procedure

X j i = (G T )� 1
j i ; (226)

where S is the overlap matrix and G is its Choleskydecomposition

S = GG T : (227)

Recently new methods that avoid the orthogonalization step have been intro-
duced. Oneof them 483 relieson modi�ed functionals that canbeoptimized without
the orthogonality constraint. These functionals, originally introduced in the con-
text of linear scalingmethods 417;452, have the property that their minima coincide
with the original Kohn{Sham energyfunctional. The methods described above can
be usedto optimize the new functional.

Another approach 309 is to use a variable transformation from the expansion
coe�cien ts of the orbitals in plane wavesto a set of non{redundant orbital rotation
angles. This method was introduced in quantum chemistry 618;149;167 and is used
successfullyin many optimization problemsthat involvea setof orthogonalorbitals.
A generalizationof the orbital rotation schemeallowedthe application alsofor cases
wherethe number of basisfunctions is ordersof magnitudesbigger than the number
of occupied orbitals. However, no advantage is gained over the standard methods,
asthe calculation of the gradient in the transformed variablesscalesthe sameasthe
orthogonalization step. In addition, there is no simple and e�cien t preconditioner
available for the orbital rotation coordinates.

3.6.4 Fix-Point Methods

Originally all methods to �nd solutions to the Kohn{Sham equations were using
matrix diagonalization methods. It becamequickly clear that direct schemescan
only be usedfor very small systems. The storagerequirements of the Kohn{Sham
matrix in the plane wave basisand the scalingproportional to the cube of the basis
set sizelead to unsurmountable problems. Iterativ e diagonalization schemescan be
adapted to the specialneedsof a planewavebasisand whencombined with a proper
preconditioner lead to algorithms that are comparableto the direct methods, both
in memory requirements and over all scaling properties. Iterativ e diagonalization
schemesare abundant. Methods based on the Lanczos algorithm 357;151;489 can
be used as well as conjugate gradient techniques 616;97. Very good results have
been achieved by the combination of the DI IS method with the minimization of
the norm of the residual vector 698;344. The diagonalization methods have to be
combined with an optimization method for the charge density. Methods basedon
mixing 153;4, quasi-Newtonalgorithms 92;77;319, and DI IS 495;344;345 are successfully
used. Also thesemethods usea preconditioning scheme. It was shown that the op-
timal preconditioning for chargedensity mixing is connectedto the chargedielectric
matrix 153;4;299;658;48. For a plane wave basis, the charge dielectric matrix can be
approximated by expressionsvery closeto the onesusedfor the preconditioning in
the direct optimization methods.

Fix-p oint methods have a slightly larger prefactor than most of the direct meth-
ods. Their advantage lies in the robustnessand capability of treating systemswith
no or small band gaps.
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3.7 Molecular Dynamics

Numerical methods to integrate the equations of motion are an important part
of every molecular dynamics program. Therefore an extended literature exists on
integration techniques (see Ref. 217 and referencesin there). All considerations
valid for the integration of equationsof motion with classicalpotentials also apply
for ab initio molecular dynamics if the Born{Opp enheimer dynamics approach is
used. Thesebasic techniques will not be discussedhere.

A good initial guessfor the Kohn{Sham optimization procedure is a crucial
ingredient for good performanceof the Born{Opp enheimerdynamicsapproach. An
extrapolation schemewasdevised24 that makesuseof the optimized wavefunctions
from previous time steps. This procedurehasa strong connectionto the basic idea
of the Car{P arrinello method, but is not essential to the method.

The remainder of this section discussesthe integration of the Car{P arrinello
equations in their simplest form and explains the solution to the constraints equa-
tion for general geometric constraints. Finally , a special form of the equations of
motion will be usedfor optimization purposes.

3.7.1 Car{Parrinel lo Equations

The Car{P arrinello Lagrangian and its derived equations of motions were intro-
duced in Sect. 2.4. Here Eqs. (41), (44), and (45) are specialized to the caseof
a plane wave basis within Kohn{Sham density functional theory. Speci�cally the
functions � i are replacedby the expansioncoe�cien ts ci (G ) and the orthonormal-
it y constraint only depends on the wavefunctions, not the nuclear positions. The
equations of motion for the Car{P arrinello method are derived from this speci�c
extendedLagrangian

L = �
X

i

X

G

j _ci (G )j2 +
1
2

X

I

M I _R 2
I � EKS [f Gg; f R I g]

+
X

ij

� ij

 
X

G

c?
i (G )cj (G ) � � ij

!

; (228)

where � is the electron mass, and M I are the massesof the nuclei. Becauseof
the expansionof the Kohn{Sham orbitals in plane waves, the orthonormalit y con-
straint does not depend on the nuclear positions. For basis sets that depend on
the atomic positions (e.g. atomic orbital basissets) or methods that introduce an
atomic position dependent metric (ultra{soft pseudopotentials 661;351, PAW 143;347,
the integration methods have to be adapted (seealso Sect. 2.5). Solutions that in-
clude thesecasescan be found in the literature 280;351;143;310. The Euler{Lagrange
equationsderived from Eq.( 228) are

� •ci (G ) = �
@E

@c?
i (G )

+
X

j

� ij cj (G ) (229)

M I •R I = �
@E
@R I

: (230)
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The two sets of equations are coupled through the Kohn{Sham energy functional
and special care has to be taken for the integration becauseof the orthonormalit y
constraint.

The integrator usedin the CPMDcode is basedon the velocity Verlet / ra ttle
algorithm 603;638;15. The velocity Verlet algorithm requires more operations and
more storagethan the Verlet algorithm 664. However, it is much easierto incorpo-
rate temperature control via velocity scaling into the velocity Verlet algorithm. In
addition, velocity Verlet allowsto changethe time step trivially and is conceptually
easierto handle 638;391. It is de�ned by the following equations

_~R I (t + � t) = _R I (t) +
� t

2M I
F I (t) (231)

R I (t + � t) = R I (t) + � t _~R I (t + � t)

_~cI (t + � t) = _cI (t) +
� t
2�

f i (t)

~ci (t + � t) = ci (t) + � t _~ci (t + � t)

ci (t + � t) = ~ci (t + � t) +
X

j

X ij cj (t)

calculate F I (t + � t)

calculate f i (t + � t)

_R I (t + � t) = _~R I (t + � t) +
� t

2M I
F I (t + � t)

_c0
i (t + � t) = _~ci (t + � t) +

� t
2�

f i (t + � t)

_ci (t + � t) = _c0
i (t + � t) +

X

j

Y ij cj (t + � t) ;

where R I (t) and ci (t) are the atomic positions of particle I and the Kohn{Sham
orbital i at time t respectively. Here, F I are the forceson atom I , and f i are the
forceson Kohn{Sham orbital i . The matrices X and Y are directly related to the
Lagrangemultipliers by

X ij =
� t2

2�
� p

ij (232)

Y ij =
� t
2�

� v
ij : (233)

Notice that in the ra ttle algorithm the Lagrange multipliers to enforce the or-
thonormalit y for the positions � p and velocities � v are treated as independent
variables. Denoting with C the matrix of wavefunction coe�cien ts ci (G ), the or-
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thonormalit y constraint can be written as

Cy(t + � t)C(t + � t) � I = 0 (234)
h

~C + X C
i y h

~C + X C
i

� I = 0 (235)

~Cy ~C + X ~CyC + Cy ~CX y + XX y � I = 0 (236)

XX y + XB + B yX y = I � A ; (237)

where the new matrices A ij = ~cy
i (t + � t)~cj (t + � t) and B ij = cy

i (t)~cj (t + � t) have
been introduced in Eq. (237). The unit matrix is denoted by the symbol I . By
noting that A = I + O(� t2) and B = I + O(� t), Eq. (237) can be solved iterativ ely
using

X (n +1) =
1
2

h
I � A + X (n ) (I � B )

+ (I � B ) X (n ) �
�

X (n )
� 2

�
(238)

and starting from the initial guess

X (0) =
1
2

(I � A ) : (239)

In Eq. (238) it has beenmade useof the fact that the matrices X and B are real
and symmetric, which follows directly from their de�nitions. Eq. (238) can usually
be iterated to a tolerance of 10� 6 within a few iterations.

The rotation matrix Y is calculated from the orthogonality condition on the
orbital velocities

_cy
i (t + � t)cj (t + � t) + cy

i (t + � t) _cj (t + � t) = 0: (240)

Applying Eq. (240) to the trial states _C0 + YC yields a simple equation for Y

Y = �
1
2

(Q + Qy); (241)

whereQ ij = cy
i (t + � t) _c0y

i (t + � t). The fact that Y canbe obtained without iteration
meansthat the velocity constraint condition Eq. (240) is satis�ed exactly at each
time step.

3.7.2 Advanced Techniques

One advantage of the velocity Verlet integrator is that it can be easily combined
with multiple time scalealgorithms 636;639 and still results in reversible dynamics.
The most successfulimplementation of a multiple time scale scheme in connec-
tion with the plane wave{pseudopotential method is the harmonic referencesystem
idea 471;639. The high frequencymotion of the plane waveswith large kinetic energy
is used as a referencesystem for the integration. The dynamics of this reference
systemis harmonic and canbe integrated analytically . In addition, this canbe com-
bined with the basic notion of a preconditioner already introduced in the section
on optimizations. The electronic massusedin the Car{P arrinello schemeis a �cti-
tious construct (seeSect. 2.4, Eq. (45)) and it is allowed to generalizethe idea by
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introducing di�eren t massesfor di�eren t "classical" degreesof freedom 473;610;639.
In agreement with the preconditioner introduced in the optimization section, the
new plane wave dependent massesare

� (G) =
�

� H (G ; G) � �
(�=� ) ( 1

2 G2 + V (G; G)) H (G ; G) � �
; (242)

whereH and V are the matrix elements of the Kohn{Sham matrix and the poten-
tial respectively. The referenceelectron massis � and the parameter � has been
introduced before in Eq. (208) as H G c ;G c . With the preconditioned massesand
the harmonic referencesystem, the equationsof motion of the system are

� (G)•ci (G ) = � � (G )ci (G ) + � � i (G ) +
X

j

� ij cj (G ) : (243)

where � � i (G ) is the force on orbital i minus � � (G ). From Eq. (243) it is easy
to seethat the frequencies! (G) =

p
� (G)=� (G) are independent of G and that

there is only one harmonic frequency equal to
p

�=� . The revised formulas for
the integration of the equationsof motion for the velocity Verlet algorithm can be
found in the literature 639.

The implications of the G vector dependent massescan be seenby revisiting
the formulas for the characteristic frequenciesof the electronic system Eqs. (52),
(53), and (54). The masses� are chosensuch that all frequencies! ij are approxi-
mately the same,thus optimizing both, adiabaticit y and maximal time step. The
disadvantage of this method is that the averageelectron massseenby the nuclei is
drastically enhanced,leading to renormalization corrections 75 on the massesM I

that are signi�cantly higher than in the standard approach and not as simple to
estimate by an analytical expression.

3.7.3 Geometrical Constraints

Geometrical constraints are used in classicalsimulations to freezefast degreesof
freedom in order to allow for larger time steps. Mainly distance constraints are
used for instance to �x intramolecular covalent bonds. These type of applications
of constraints is of lesserimportance in ab initio molecular dynamics. However, in
the simulation of rare events such asmany reactions,constraints play an important
role together with the method of thermodynamic integration 217. The "blue{mo on"
ensemble method 115;589 enablesone to compute the potential of mean force. This
potential can be obtained directly from the averageforce of constraint and a geo-
metric correction term during a molecular dynamics simulation as follows:

F (� 2) � F (� 1) =
Z � 2

� 1

d� 0
�

@H
@�

� cond :

� 0

; (244)

where F is the free energyand � (r ) a one{dimensional reaction coordinate, H the
Hamiltonian of the systemand h�� � i cond :

� 0 the conditioned averagein the constraint
ensemble 589. By way of the blue moon ensemble, the statistical averageis replaced
by a time averageover a constrained tra jectory with the reaction coordinate �xed
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at special values, � (R ) = � 0 , and _� (R ; _R) = 0. The quantit y to evaluate is the
mean force

dF
d� 0 =



Z� 1=2 [� � + kB TG]

�
� 0



Z� 1=2

�
� 0

; (245)

where � is the Lagrangemultiplier of the constraint,
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; (246)
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; (247)

whereh�� � i � 0 is the unconditioned average,as directly obtained from a constrained
molecular dynamics run with � (R ) = � 0 and

F (� 2) � F (� 1) =
Z � 2

� 1

d� 0dF
d� 0 (248)

�nally de�nes the free energy di�erence. For the special caseof a simple distance
constraint � (R ) = jR I � R J j the parameter Z is a constant and G = 0.

The ra ttle algorithm, allows for the calculation of the Lagrangemultiplier of
arbitrary constraints on geometricalvariableswithin the velocity Verlet integrator.
The following algorithm is implemented in the CPMDcode. The constraints are
de�ned by

� ( i ) (f R I (t)g) = 0 ; (249)

and the velocity Verlet algorithm can be performed with the following steps.

_~R I = _R I (t) +
� t

2M I
F I (t)

~R I = R I (t) + � t _~R I

R I (t + � t) = ~R I +
� t2

2M I
gp(t)

calculate F I (t + � t)

_R 0
I = _~R I +

� t
2M I

F I (t + � t)

_R I (t + � t) = _R 0
I +

� t
2M I

gv (t + � t) ;

where the constraint forcesare de�ned by

gp(t) = �
X

i

� i
p

@� ( i ) (f R I (t)g)
@R I

(250)

gv (t) = �
X

i

� i
v

@� ( i ) (f R I (t)g)
@R I

: (251)
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The Lagrange multiplier have to be determined to ensure that the constraint on
the positions and velocities are exactly ful�lled at the end of the time step. For the
position, the constraint condition is

� ( i ) (f R I (t + � t)g) = 0 : (252)

Eq. (252) is in generala systemof nonlinear equations in the Lagrangemultipliers
� i

p . Theseequations can be solved using a generalizedNewton algorithm 491 that
can be combined with a convergenceaccelerationschemebasedon the direct inver-
sion in the iterativ e subspacemethod 495;144. The error vectors for a given set of
Lagrangemultipliers � are calculated from

ei (� ) = �
X

j

J � 1
ij (� )� ( j ) (� ) : (253)

The Jacobian J is de�ned by

J ij (� ) =
@� ( i ) (� )

@� j (254)

=
X

I

@� ( i ) (� )
@R I (� )

@R I (� )
@� j (255)

= �
X

I

� t2

2M I
f c
I (� )f c

I (0) ; (256)

where f c
I (� ) =

P
i � i @� ( i ) =@R I . Typically only a few iterations are needed to

convergethe Lagrangemultipliers to an accuracyof 1 � 10� 8.
The constraint condition for the velocities can be cast into a system of linear

equations. Again, as in the caseof the orthonormalit y constraints in the Car{
Parrinello method, the Lagrangemultiplier for the velocity update canbecalculated
exactly without making useof an iterativ e scheme. De�ning the derivative matrix

A iI =
@� ( i )

@R I
; (257)

the velocity constraints are

_� ( i ) (t + � t) = 0 (258)
X

I

@� ( i )

@R I

_R I = 0 (259)

�
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I
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2M I
A iI A j I

!

� v
j =

X

I

A iI _R 0
I : (260)

The only information neededto implement a newtypeof constraint arethe formulas
for the functional value and its derivative with respect to the nuclear coordinates
involved in the constraint.
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3.7.4 Using Car-Parrinel lo Dynamics for Optimizations

By adding a friction term, Car{P arrinello molecular dynamics can be turned into
a damped secondorder dynamics scheme(seealso Sect. 2.4.6).

The friction can be applied both to the nuclear degreesof freedom and the
electronic coordinates. The resulting dynamics equation are a powerful method to
simultaneously optimize the atomic structure and the Kohn{Sham orbitals 472;610.
Harmonic referencesystemintegration and plane wave dependent electron masses,
introduced above, are especially helpful in this context, as the derived dynamics
doesnot have a direct physical relevance.

Introducing a friction forceproportional to the constants  n and  e the equations
of motion can readily be integrated using the velocity Verlet algorithm. The friction
terms translate into a simple rescalingof the velocities at the beginning and end of
the time step according to

_R I (t) =  n
_R I (t)

_ci (t) =  e _ci (t)

VELOCITY VERLETUPDATE
_R I (t + � t) =  n

_R I (t + � t)

_ci (t + � t) =  e _ci (t + � t) :

It was shown 472;610 that this scheme leads to optimizations that are competitiv e
with other methods described in Sect. 3.6

3.8 Data Structures and Computational Kernels

In the practical implementation of the method, mathematical symbols have to
be translated into data structures of the computer language. Then mathematical
formulas are set into computer code using the data structures. The layout of the
data structures should be such that optimal performancefor the algorithms can be
achieved. The CPMDcode is written in f or tran77 and in the following sectionsthe
most important data structures and computational kernelswill be given in pseudo
code form. The following variables are used to denote quantities that measure
system size.

Nat number of atoms
Np number of projectors
Nb number of electronic bands or states
NPW number of plane-waves
ND number of plane-wavesfor densitiesand potentials
Nx , Ny , Nz number of grid points in x, y, and z direction
N = Nx Ny Nz total number of grid points

In Table 3 the relative sizeof this variablesare given for two systems.The example
for a silicon crystal assumesan energycuto� of 13 Rydberg and s non-locality for
the pseudopotential. In the exampleof a water system the numbers are given per
molecule. The cuto� usedwas 70 Rydberg and the oxygen pseudopotential hasa s
nonlocal part, the hydrogen pseudopotential is local.
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Table 3. Relativ e size of characteristic variables in a plane wave calculation . Seetext for details.

silicon water
Nat 1 3
Np 1 1
Nb 2 4
NPW 53 1000
ND 429 8000
N 1728 31250

3.8.1 CPMDProgram: Data Structures

Important quantities in the pseudopotential plane{wave method depend either not
at all, linearly, or quadratically on the system size. Examples for the �rst kind of
data are the unit cell matrix h and the cuto� E cut . Variableswith a sizethat grows
linearly with the system are

r(3, Nat ) nuclear positions
v(3, Nat ) nuclear velocities
f(3, Nat ) nuclear forces
g(3, NP W ) plane{wave indices
ipg(3, NP W ) mapping of G{v ectors (positive part)
img(3, NP W ) mapping of G{v ectors (negative part)
rhog( NP W ) densities(n, nc, ntot ) in Fourier{space
vpot( NP W ) potentials (Vlo c, Vxc , VH ) in Fourier{space
n( Nx , Ny , Nz ) densities(n, nc, ntot ) in real{space
v( Nx , Ny , Nz ) potentials (Vlo c, Vxc , VH ) in real{space
vps( ND ) local pseudopotential
rpc( ND ) core charges
pro( NP W ) projectors of non-local pseudopotential.

The pseudopotential related quantities vps, rpc , and pro are one{dimensional in
system size but also depend on the number of di�eren t atomic species. In the
following it is assumedthat this is one. It is easyto generalizethe pseudocodes
given to more than one atomic species. For real quantities that depend on G{
vectorsonly half of the valueshave to be stored. The other half can be recomputed
when neededby using the symmetry relation

A(G) = A?(� G ) : (261)

This savesa factor of two in memory. In addition G vectors are stored in a linear
array, instead of a three-dimensionalstructure. This allows to store only non{zero
variables. Becausethere is a spherical cuto�, another reduction of a factor of two
is achieved for the memory. For the Fourier transforms the variables have to be
prepared in a three-dimensional array. The mapping of the linear array to this
structure is provided by the information stored in the arrays ipg and img.
Most of the memory is neededfor the storageof quantities that grow quadratically
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with systemsize.

eigr( ND , Nat ) structure factors
fnl( Np, Nb) overlap of projectors and bands
dfnl( Np, Nb,3) derivative of fnl
smat(Nb, Nb) overlap matrices betweenbands
cr( NP W , Nb) bands in Fourier space
cv( NP W , Nb) velocity of bands in Fourier space
cf( NP W , Nb) forcesof bands in Fourier space

In order to save memory it is possible to store the structure factors only for the
G vectors of the wave function basis or even not to store them at all. However,
this requires that the missing structure factors are recomputed whenever needed.
The structure factors eigr and the wavefunction related quantities cr, cv, cf are
complex numbers. Other quantities, like the local pseudopotential vps, the core
charges rpc , and the projectors pro can be stored as real numbers if the factor
(� i ) l is excluded.

3.8.2 CPMDProgram: Computational Kernels

Most of the calculations in a plane wave codeare donein only a few kernel routines.
These routines are given in this section using a pseudo code language. Where
possiblean implementation using basic linear algebra(blas ) routines is given. The
�rst kernel is the calculation of the structure factors. The exponential function of
the structure factor separatesin three parts along the directions sx ; sy ; sz.

MODULEStructureFactor
FORi=1: Nat

s(1:3) = 2 * PI * MATMUL[htm1(1:3,1:3) ,r(1: 3,i)]
dp(1:3) = CMPLX[COS[s(1:3)], SIN[s (1:3) ]]
dm(1:3) = CONJG[dp(1:3)]
e(0,1:3,i) = 1
FORk=1: gmax

e(k,1:3,i) = e(k-1,1:3,i) * dp
e(-k,1:3,i) = e(-k+1,1:3,i) * dm

END
FORj=0: ND

eigr(j,i) = e(g(1,j),1,i) * e(g(2,j),2,i) * e(g(3,j),3,i)
END

END

In the module above htm1 is the matrix (h t )� 1. One of the most important calcu-
lation is the inner product of two vectors in Fourier space.This kernel appears for
example in the calculation of energies

e =
X

G

A?(G )B(G) : (262)

Making useof the fact that both functions are real the sum can be restricted to half
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of the G vectors,and only real operations have to be performed. Approximately a
factor of three in operations can be save this way. Special care has to be taken for
the zero G vector. It is assumedthat this plane wave component is stored in the
�rst position of the arrays.

MODULEDotProduct
e = A(1) * B(1)
FORi=2: ND

ar = REAL(A(i))
ai = IMAG(A(i))
br = REAL(B(i))
bi = IMAG(B(i))
e = e + 2 * (ar * br + ai * bi)

END

This loop structure is available in the blas library , optimized on most computer
architectures. To use the blas routines for real variables, complex numbers have
to be stored as two real numbers in contiguous memory locations.

e = A(1) * B(1) + 2 * sdot(2 * ND - 2,A(2),1,B(2),1)

The calculation of overlap matrices between sets of vectors in real spaceis a im-
portant task in the orthogonalization step

Sij =
X

G

A?
i (G )B j (G ) : (263)

It can be executedby using matrix multiply routines from the blas library . The
special caseof the zero G vector is handled by a routine that performs a rank 1
update of the �nal matrix.

MODULEOverlap
CALLSGEMM('T','N', Nb, Nb ,2* NPW ,2,&

& ca(1,1),2* NPW ,cb(1,1),2* NPW ,0,smat, Nb)
CALLSDER(Nb , Nb ,-1,ca(1,1),2* NPW ,cb(1,1),2* NPW ,smat, Nb)

For a symmetric overlap additional time can be saved by using the symmetric
matrix multiply routine. The overlap routines scale like N 2

b NPW . It is therefore
very important to have an implementation of these parts that performs close to
peekperformance.

MODULESymmetricOverla p
CALLSSYRK('U','T', Nb,2* NPW ,2,ca(1,1),2* NPW ,0,smat, Nb)
CALLSDER(Nb , Nb ,-1,ca(1,1),2* NPW ,cb(1,1),2* NPW ,smat, Nb)

Another operation that scalesas the overlap matrix calculations is the rotation of
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a set of wavefunctions in Fourier space

B i (G ) =
X

j

A j (G )Sj i : (264)

Again this kernel can be executedby using the optimized blas matrix multiply
routines.

MODULERotation
CALLSGEMM('N','N',2* NPW , Nb , Nb ,1,ca(1,1),2* NPW ,&

& smat, Nb,0,cb(1,1),2* NPW )

The overlap calculation of the projectors of the nonlinear pseudopotential with
the wavefunctions in Fourier spacescalesas NpNbNPW . As the projectors are
stored as real quantities, the imaginary prefactor and the structure factor have
to be applied before the inner product can be calculated. The following pseudo
code calculatesM projectors at a time, making useof the special structure of the
prefactor. This allows again to do all calculations with real quantities. The code
assumesthat the total number of projectors is a multiple of M . A generalization
of the code to other casesis straightforward. By using batches of projectors the
overlap can be calculated using matrix multiplies. The variable lp(i) holds the
angular momentum of projector i .

MODULEFNL
FORi=1: Np ,M

IF (MOD(lp(i),2) == 0) THEN
FORj=0:M-1

pf = -1**(lp(i+j)/2)
FORk=1: NPW

t = pro(k) * pf
er = REAL[eigr(k,iat(i+ j))]
ei = IMAG[eigr(k,iat(i+ j))]
scr(k,j) = CMPLX[t * er,t * ei]

END
END

ELSE
FORj=0:M-1

pf = -1**(lp(i+j)/2+1 )
FORk=1: NPW

t = pro(k) * pf
er = REAL[eigr(k,iat(i+ j))]
ei = IMAG[eigr(k,iat(i+ j))]
scr(k,j) = CMPLX[-t * ei,t * er]

END
END

ENDIF
scr(1,0:M-1) = scr(1,0:M-1)/2
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CALLSGEMM('T','N',M, Nb,2* NPW ,2,&
& scr(1,0),2* NPW ,cr(1,1),2* NPW ,0,fnl(i,1), Np)

END

Fourier transform routines are assumedto work on complex data and return
alsoarrays with complexnumbers. The transform of data with the density cuto� is
shown in the next two pseudocode sections. It is assumedthat a three dimensional
fast Fourier transform routine exists. This is in fact the caseon most computers
where optimized scienti�c libraries are available. The next two pseudocode seg-
ments show the transform of the charge density from Fourier spaceto real space
and back.

MODULEINVFFT
scr(1: Nx ,1: Ny ,1: Nz) = 0
FORi=1: ND

scr(ipg(1,i),ipg(2, i),ip g(3, i)) = rhog(i)
scr(img(1,i),img(2, i),im g(3, i)) = CONJG[rhog(i)]

END
CALLFFT3D("INV",scr)
n(1: Nx ,1: Ny ,1: Nz) = REAL[scr(1: Nx,1: Ny ,1: Nz)]

MODULEFWFFT
scr(1: Nx ,1: Ny ,1: Nz) = n(1: Nx ,1: Ny ,1: Nz)
CALLFFT3D("FW",scr)
FORi=1: ND

rhog(i) = scr(ipg(1,i),ipg(2 ,i),i pg(3, i))
END

Special kernelsare presented for the calculation of the density and the application
of the local potential. These are the implementation of the o w charts shown in
Fig. 8. The operation count of theseroutines is NbN log[N ]. In most applications
these routines take most of the computer time. Only for the biggest applications
possible on todays computers the cubic scaling of the orthogonalization and the
nonlocal pseudopotential becomedominant. A small prefactor and the optimized
implementation of the overlap are the reasonsfor this.

In the Fourier transforms of the wavefunction two properties are usedto speed
up the calculation. First, becausethe wavefunctionsare real two transforms can be
done at the sametime, and second,the smaller cuto� of the wavefunctions can be
usedto avoid someparts of the transforms. The useof the sparsity in the Fourier
transforms is not shown in the following modules. In an actual implementation a
mask will be generatedand only transforms allowedby this mask will be executed.
Under optimal circumstancesa gain of almost a factor of two can be achieved.
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MODULEDensity
rho(1: Nx ,1: Ny ,1: Nz) = 0
FORi=1: Nb ,2

scr(1: Nx ,1: Ny ,1: Nz) = 0
FORj=1: NPW

scr(ipg(1,i),ip g(2,i ),ipg (3,i) ) = c(j,i) + I * c(j,i+1)
scr(img(1,i),im g(2,i ),img (3,i) ) = CONJG[c(j,i) + I * c(j,i+1)]

END
CALLFFT3D("INV",scr)
rho(1: Nx ,1: Ny ,1: Nz) = rho(1: Nx ,1: Ny ,1: Nz) + &

& REAL[scr(1: Nx,1: Ny ,1: Nz)]**2 + IMAG[scr(1: Nx,1: Ny ,1: Nz)]**2
END

MODULEVPSI
FORi=1: Nb ,2

scr(1: Nx ,1: Ny ,1: Nz) = 0
FORj=1: NPW

scr(ipg(1,i),ip g(2,i ),ipg (3,i) ) = c(j,i) + I * c(j,i+1)
scr(img(1,i),im g(2,i ),img (3,i) ) = CONJG[c(j,i) + I * c(j,i+1)]

END
CALLFFT3D("INV",scr)
scr(1: Nx ,1: Ny ,1: Nz) = scr(1: Nx ,1: Ny ,1: Nz) * &

& vpot(1: Nx ,1: Ny ,1: Nz)
CALLFFT3D("FW",scr)
FORj=1: NPW

FP = scr(ipg(1,i),ip g(2,i ),ipg (3,i) ) &
& + scr(img(1,i),img(2, i),i mg(3,i))

FM= scr(ipg(1,i),ip g(2,i ),ipg (3,i) ) &
& - scr(img(1,i),img(2, i),i mg(3,i))

fc(j,i) = f(i) * CMPLX[REAL[FP],IMAG[FM]]
fc(j,i+1) = f(i+1) * CMPLX[IMAG[FP],-REAL[FM]]

END
END

3.9 Parallel Computing

3.9.1 Intr oduction

Ab initio molecular dynamics calculation need large computer resources.Memory
and cpu time requirement make it necessaryto run projects on the biggest com-
puters available. It is exclusively parallel computers that provide these resources
today. There are many di�eren t types of parallel computers available. Comput-
ers di�er in their memory accesssystemand their communication system. Widely
di�eren t performancesare seenfor bandwidth and latency. In addition, di�eren t
programming paradigms are supported. In order to have a portable code that can
be usedon most of the current computer architectures, CPMDwas programmedus-
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ing standard communication libraries and making no assumption on the topology
of the processornetwork and memory accesssystem.

Minimizing the communication was the major goal in the implementation of
the parallel plane wave code in CPMD. Therefore, the algorithms had to be adapted
to the distributed data model chosen. The most important decisionsconcern the
data distribution of the largest arrays in the calculation. Thesearrays are the ones
holding information on the wavefunctions. Three distribution strategies can be
envisagedand were usedbefore 90;137;687;688;117.

First, the data are distributed over the bands 687. Each processorholds all
expansion coe�cien ts of an electronic band locally. Several problems arise with
this choice. The number of bands is usually of the samemagnitude as the number
of processors. This leads to a severe load-balancing problem that can only be
avoided for certain magic numbers, namely if the number of bands is a multiple
of the number of cpu 's. Furthermore this approach requires to perform three-
dimensional Fourier transforms locally. The memory requirements for the Fourier
transform only increaselinearly with systemsize,but their prefactor is very big and
a distribution of thesearrays is desirable. In addition, all parts of the program that
do not contain loopsover the number of bandshave to be parallelizedusing another
scheme, leading to additional communication and synchronization overhead.

Second, the data is distributed over the Fourier space components and the
real space grid is also distributed 90;137;117. This scheme allows for a straight
forward parallelization of all parts of the program that involveloopsover the Fourier
components or the real spacegrid. Only a few routines are not covered by this
scheme. The disadvantage is that all three-dimensionalFourier transforms require
communication.

Third, it is possibleto use a combination of the above two schemes688. This
leadsto the most complicated scheme,as only a careful arrangement of algorithms
avoids the disadvantagesof the other schemeswhile still keepingtheir advantages.

Additionally , it is possibleto distribute the loop over k{p oints. As most calcu-
lation only usea limited number of k{p oints or even only the �{p oint, this method
is of limited use. However, combining the distribution of the k-points with one of
the other method mentioned above might result in a very e�cien t approach.

The CPMDprogram is parallelizedusingthe distribution in Fourier and real space.
The data distribution is held �xed during a calculation, i.e. static load balancing
is used. In all parts of the program where the distribution of the plane wavesdoes
not apply, an additional parallelization over the number of atoms or bands is used.
However, the data structures involved are replicated on all processors.

A specialsituation existsfor the caseof path integral calculations(seeSect.4.4),
where an inherent parallelization over the Trotter slicesis present. The problem is
"embarrassinglyparallel" in this variable and perfect parallelism canbeobserved on
all typesof computers,even on clustersof workstations or supercomputers("meta{
computing"). In practice the parallelization over the Trotter sliceswill be combined
with one of the schemesmentioned above, allowing for good results even on mas-
sively parallel machines with several hundred processors.
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3.9.2 CPMDProgram: Data Structures

In addition to the variables used in the serial version, local copieshave to be de-
�ned. Theselocal variableswill be indexedby a superscript indicating the processor
number. The total number of processorsis P . Each processorhasa certain number
of plane waves,atoms, electronic bands and real spacegrid points assigned.

N p
at number of atoms on processorp

N p
p number of projectors on processorp

N p
b number of electronic bands or states on processorp

N p
PW number of plane-waveson processorp

N p
D number of plane-wavesfor densitiesand potentials on processorp

N p
x , Ny , Nz number of grid points in x, y, and z direction on processorp

N p= N p
x Ny Nz total number of grid points on processorp

The real spacegrid is only distributed over the x coordinates. This decision is
related to the performanceof the Fourier transform that will be discussedin more
detail in the following sections. The distribution algorithm for atoms, projectors
and bands just divides the total number of thesequantities in equal junks basedon
their arbitrary numbering. The algorithms that use these parallelization schemes
do not play a major role in the overall performanceof the program (at least for the
systemsaccessiblewith the computers available today) and small imperfections in
load balancing can be ignored.
Data structures that are replicated on all processors:

r(3, Nat ) nuclear positions
v(3, Nat ) nuclear velocities
f(3, Nat ) nuclear forces
fnl( Np, Nb) overlap of projectors and bands
smat(Nb, Nb) overlap matrices betweenbands.

Data structures that are distributed over all processors:

g(3, N p
P W ) plane{wave indices

ipg(3, N p
P W ) mapping of G{v ectors (positive part)

img(3, N p
P W ) mapping of G{v ectors (negative part)

rhog( N p
P W ) densities(n, nc, ntot ) in Fourier{space

vpot( N p
P W ) potentials (Vlo c, Vxc , VH ) in Fourier{space

n( N p
x , Ny , Nz ) densities(n, nc, ntot ) in real{space

v( N p
x , Ny , Nz ) potentials (Vlo c, Vxc , VH ) in real{space

vps( N p
D ) local pseudopotential

rpc( N p
D ) core charges

pro( N p
P W ) projectors of non-local pseudopotential

eigr( N p
D , Nat ) structure factors

dfnl( Np, N p
b ,3) derivative of fnl

cr( N p
P W , Nb) bands in Fourier space

cv( N p
P W , Nb) velocity of bands in Fourier space

cf( N p
P W , Nb) forcesof bands in Fourier space.

Several di�eren t goals should be achieved in the distribution of the plane waves
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over processors. All processorsshould hold approximately the same number of
plane waves. If a plane wave for the wavefunction cuto� is on a certain processor,
the sameplane wave should be on the sameprocessorfor the density cuto�. The
distribution of the plane waves should be such that at the beginning or end of a
three dimensional Fourier transform no additional communication is needed. To
achieve all of these goals the following heuristic algorithm 137 is used. The plane
wavesare ordered into "p encils". Each pencil holds all plane waveswith the same
gy and gz components. The pencils are numbered according to the total number
of plane waves that are part of it. Pencils are distributed over processorsin a
"round robin" fashion switching directions after each round. This is �rst done for
the wavefunction cuto�. For the density cuto� the distribution is carried over, and
all new pencils are distributed according to the samealgorithm. Experienceshows
that this algorithm leadsto good results for the load balancing on both levels, the
total number of plane wavesand the total number of pencils. The number of pencils
on a processoris proportional to the work for the �rst step in the three-dimensional
Fourier transform.
Special care has to be taken for the processorthat holds the G = 0 component.
This component has to be treated individually in the calculation of the overlaps.
The processorthat holds this component will be called p0.

3.9.3 CPMDProgram: Computational Kernels

There are three communication routines mostly used in the parallelization of the
CPMDcode. All of them are collective communication routines, meaning that all
processorsare involved. This alsoimplies that synchronization stepsare performed
during the execution of theseroutines. Occasionallyother communication routines
have to be used (e.g. in the output routines for the collection of data) but they
do not appear in the basic computational kernels. The three routines are the
Broadcast , GlobalSum, and MatrixTranspose . In the Broadcast routine data is
sendfrom one processor(px) to all other processors

xp  xpx : (265)

In the GlobalSumroutine a data item is replacedon each processorby the sum over
this quantit y on all processors

xp  
X

p

xp : (266)

The MatrixTranspose changesthe distribution pattern of a matrix, e.g. from row
distribution to column distribution

x(p; :)  x(:; p) : (267)

On a parallel computer with P processors,a typical latency time t L (time for the
�rst data to arrive) and a bandwidth of B , the time spend in the communication
routines is

Broadcast log2[P ] f tL + N=Bg
GlobalSum log2[P ] f tL + N=Bg
MatrixTranspose PtL + N=(PB)
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Table 4. Distribution of plane waves and "p encils" in parallel runs on di�eren t numbers of pro-
cessors. Example for a cubic box with a volume of 6479.0979 bohr 3 and a 70 Rydb erg cuto� for
the wavefunctions. This is the simulation box needed for 32 water molecules at normal pressure.

wavefunction cuto�
PE plane waves pencils

max min max min
1 32043 32043 1933 1933
2 16030 16013 967 966
4 8016 8006 484 482
8 4011 4000 242 240

16 2013 1996 122 119
32 1009 994 62 59
64 507 495 32 29

128 256 245 16 14
density cuto�

PE plane waves pencils
max min max min

1 256034 256034 7721 7721
2 128043 127991 3859 3862
4 64022 63972 1932 1929
8 32013 31976 966 964

16 16011 15971 484 482
32 8011 7966 242 240
64 4011 3992 122 119

128 2006 1996 62 59

where it is assumedthat the amount of data N is constant. The time needed
in Broadcast and GlobalSum will increasewith the logarithm of the number of
processorsinvolved. The time for the matrix transposition scalesfor one part
linearly with the number of processors.Once this part is small, then the latency
part will be dominant and increaselinearly. Besidesload balancing problems, the
communication routines will limit the maximum speedup that can be achieved on
a parallel computer for a given problem size. Examples will be shown in the last
part of this section.
With the distribution of the data structures given, the parallelization of the com-
putational kernels is in most caseseasy. In the StructureFactor and Rotation
routines the loop over the plane wavesND has to be replacedby N p

D . The routines
performing inner products have to be adapted for the G = 0 term and the global
summation of the �nal result.

MODULEDotProduct
IF (p == P0) THEN

ab = A(1) * B(1) + 2 * sdot(2 * (N p
D � 1),A(2),1,B(2),1)

ELSE
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ab = 2 * sdot(2 * N p
D ,A(1),1,B(1),1)

ENDIF
CALLGlobalSum[ab]

MODULEOverlap
CALLSGEMM('T','N', Nb, Nb ,2* N p

PW ,2,&
& ca(1,1),2* N p

PW ,cb(1,1),2* N p
PW ,0,smat, Nb)

IF (p == P0) CALLSDER(Nb , Nb ,-1,ca(1,1),2* N p
PW ,&

& cb(1,1),2* N p
PW ,smat, Nb)

CALLGlobalSum[smat]

Similarly , the overlap part of the FNL routine has to be changed and the loops
restricted to the local number of plane waves.

MODULEFNL
FORi=1: Np ,M

IF (MOD(lp(i),2) == 0) THEN
FORj=0:M-1

pf = -1**(lp(i+j)/2)
FORk=1: N p

PW
t = pro(k) * pf
er = REAL[eigr(k,iat(i+ j))]
ei = IMAG[eigr(k,iat(i+ j))]
scr(k,j) = CMPLX[t * er,t * ei]

END
END

ELSE
FORj=0:M-1

pf = -1**(lp(i+j)/2+1 )
FORk=1: N p

PW
t = pro(k) * pf
er = REAL[eigr(k,iat(i+ j))]
ei = IMAG[eigr(k,iat(i+ j))]
scr(k,j) = CMPLX[-t * ei,t * er]

END
END

ENDIF
IF (p == P0) scr(1,0:M-1) = scr(1,0:M-1)/2
CALLSGEMM('T','N',M, Nb,2* N p

PW ,2,&
& scr(1,0),2* N p

PW ,cr(1,1),2* N p
PW ,0,fnl(i,1), Np)

END
CALLGlobalSum[fnl]

The routines that need the most changesare the once that include Fourier trans-
forms. Due to the complicated break up of the plane wavesa new mapping has to
be introduced. The map mapxyensuresthat all pencils occupy contiguous memory
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locations on each processor.

MODULEINVFFT
scr1(1: Nx,1: N D

pencil ) = 0
FORi=1: N p

D
scr1(ipg(1,i),mapxy (ipg( 2,i) ,ipg( 3,i)) ) = rhog(i)
scr1(img(1,i),mapxy (img( 2,i) ,img( 3,i)) ) = CONJG[rhog(i)]

END
CALLParallelFFT3D("IN V",sc r1,sc r2)
n(1: N p

x ,1: Ny ,1: Nz) = REAL[scr2(1: N p
x ,1: Ny ,1: Nz)]

MODULEFWFFT
scr2(1: N p

x ,1: Ny ,1: Nz) = n(1: N p
x ,1: Ny ,1: Nz)

CALLParallelFFT3D("FW ",scr 1,scr 2)
FORi=1: N p

D
rhog(i) = scr1(ipg(1,i),mapx y(ipg (2,i) ,ipg( 3,i)) )

END

Due to the mapping of the y and z direction in Fourier spaceonto a singledimension,
input and output array of the parallel Fourier transform do have di�eren t shapes.

MODULEDensity
rho(1: N p

x ,1: Ny ,1: Nz) = 0
FORi=1: Nb ,2

scr1(1: Nx ,1: N PW
pencil ) = 0

FORj=1: N p
PW

scr1(ipg(1,i),m apxy( ipg(2 ,i),i pg(3, i))) = &
& c(j,i) + I * c(j,i+1)

scr1(img(1,i),m apxy( img(2,i),i mg(3,i))) = &
& CONJG[c(j,i) + I * c(j,i+1)]

END
CALLParallelFFT3D("INV" ,scr 1,scr 2)
rho(1: N p

x ,1: Ny ,1: Nz) = rho(1: N p
x ,1: Ny ,1: Nz) + &

& REAL[scr2(1: N p
x ,1: Ny ,1: Nz)]**2 + &

& IMAG[scr2(1: N p
x ,1: Ny ,1: Nz)]**2

END

MODULEVPSI
FORi=1: Nb ,2

scr1(1: Nx ,1: N PW
pencil ) = 0

FORj=1: N p
PW

scr1(ipg(1,i),m apxy( ipg(2 ,i),i pg(3, i))) = &
& c(j,i) + I * c(j,i+1)

scr1(img(1,i),m apxy( img(2,i),i mg(3,i))) = &
& CONJG[c(j,i) + I * c(j,i+1)]
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END
CALLParallelFFT3D("INV" ,scr 1,scr 2)
scr2(1: N p

x ,1: Ny ,1: Nz) = scr2(1: N p
x ,1: Ny ,1: Nz) * &

& vpot(1: N p
x ,1: Ny ,1: Nz)

CALLParallelFFT3D("FW", scr1 ,scr2 )
FORj=1: N p

PW
FP = scr1(ipg(1,i),m apxy( ipg(2 ,i),i pg(3,i))) &

& + scr1(img(1,i),mapxy (img (2,i) ,img( 3,i)) )
FM= scr1(ipg(1,i),m apxy( ipg(2 ,i),i pg(3,i))) &

& - scr1(img(1,i),mapxy (img (2,i) ,img( 3,i)) )
fc(j,i) = f(i) * CMPLX[REAL[FP],IMAG[FM]]
fc(j,i+1) = f(i+1) * CMPLX[IMAG[FP],-REAL[FM]]

END
END

The parallel Fourier transform routine canbe built from a multiple one-dimensional
Fourier transform and a parallel matrix transpose. As mentioned above, only one
dimension of the real spacegrid is distributed in the CPMDcode. This allows to
combine the transforms in y and z direction to a seriesof two-dimensional trans-
forms. The handling of the plane wavesin Fourier spacebreaksthe symmetry and
two di�eren t transpose routines are needed,depending on the direction. All the
communication is done in the routine ParallelTranspose . This routine consists
of a part where the coe�cien ts are gathered into matrix form, the parallel matrix
transpose, and a �nal part where the coe�cien ts are put back according to the
mapping used.

MODULEParallelFFT3D(t ag,a, b)
IF (tag == "INV") THEN

CALLMLTFFT1D(a)
CALLParallelTranspose(" INV",b,a)
CALLMLTFFT2D(b)

ELSE
CALLMLTFFT2D(b)
CALLParallelTranspose(" FW",b,a)
CALLMLTFFT1D(a)

ENDIF

All other parts of the program usethe samepatterns for the parallelization as the
onesshown in this section.

3.9.4 Limitations

Two typesof limitations canbe encountered when trying to run a parallel code on a
computer. Increasingthe number of processorsworking on a problem will no longer
lead to a faster calculation or the memory available is not su�cien t to perform a
calculation, independently on the number of processorsavailable. The �rst type of
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Figure 13. Maximal theoretical speedup for a calculation with a real space grid of dimension 100
(solid line). E�ectiv e speedup for a 32 water molecule system with an energy cuto� of 70 Rydb erg
and a real space grid of dimension 100 (dotted line with diamonds)

limitation is related to bad load-balancingor the computation becomesdominated
by the non-scalingpart of the communication routines. Load{balancing problems
in the CPMDcode are almost exclusively due to the distribution of the real space
arrays. Only the x coordinate is distributed. There are typically of the order of
100grid points in each direction. Figure 13 shows the maximal theoretical speedup
for a calculation with a real spacegrid of dimension 100. The stepsare due to the
load{balancing problemsinitiated by the granularit y of the problem (the dimension
is an integer value). No further speedup can be achieved once100 processorsare
reached. The secondcurve in Fig. 13shows actual calculationsof the full CPMDcode.
It is clearly shown that the load balancingproblem in the Fourier transforms a�ects
the performanceof this special example. Where this stepsappear and how severe
the performancelossesare dependsof courseon the system under consideration.

To overcomethis limitation a method basedon processorgroups has beenim-
plemented into the code. For the two most important routines wherethe real space
grid load{balancing problem appears,the calculation of the chargedensity and the
application of the local potential, a secondlevel of parallelism is introduced. The
processorsare arrangedinto a two-dimensionalgrid and groupsare build according
to the row and column indices. Each processoris a member of its column group
(colgrp ) and its row group (rowgrp). In a �rst step a data exchangein the column
group assuresthat all the data neededto perform Fourier transforms within the
row groups are available. Then each row group performs the Fourier transforms
independently and in the end another data exchangein the column groupsrebuilds
the original data distribution. This scheme(shown in the pseudocode for the den-
sity calculation) needsroughly double the amount of communication. Advantages
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are the improved load{balancing for the Fourier transforms and the bigger data
packagesin the matrix transposes. The number of plane waves in the row groups
(N pr

PW ) is calculated as the sum over all local plane waves in the corresponding
column groups.

MODULEDensity
rho(1: N pr

x ,1: Ny ,1: Nz) = 0
FORi=1: Nb ,2*Pc

CALLParallelTranspose(c (:,i ),col grp)
scr1(1: Nx ,1: N PW

pencil ;r ) = 0
FORj=1: N pr

PW
scr1(ipg(1,i),m apxy( ipg(2 ,i),i pg(3, i))) = &

& c(j,i) + I * c(j,i+1)
scr1(img(1,i),m apxy( img(2,i),i mg(3,i))) = &

& CONJG[c(j,i) + I * c(j,i+1)]
END
CALLParallelFFT3D("INV" ,scr 1,scr 2,row grp)
rho(1: N pr

x ,1: Ny ,1: Nz) = rho(1: N pr
x ,1: Ny ,1: Nz) + &

& REAL[scr2(1: N p
x ,1: Ny ,1: Nz)]**2 + &

& IMAG[scr2(1: N p
x ,1: Ny ,1: Nz)]**2

END
CALLGlobalSum(rho,col grp)

The useof two task groups in the exampleshown in Fig. 13 leadsto an increaseof
speedupfor 256 processorsfrom 120 to 184 on a Cray T3E/600 computer.

The e�ect of the non-scalability of the global communication used in CPMDis
shown in Fig. 14. This example shows the percentage of time used in the global
communication routines (global sums and broadcasts) and the time spend in the
parallel Fourier transforms for a system of 64 silicon atoms with a energycuto� of
12 Rydberg. It can clearly be seenthat the global sumsand broadcastsdo not scale
and therefore becomemore important the more processorsare used. The Fourier
transforms on the other hand scale nicely for this range of processors. Where
the communication becomesdominant depends on the size of the system and the
performanceratio of communication to cpu.
Finally , the memory available on each processormay becomea bottleneck for large
computations. The replicated data approach for somearrays adapted in the im-
plementation of the code poseslimits on the system sizethat can be processedon
a given type of computer. In the outline given in this chapter there are two types
of arrays that scale quadratically in system size that a replicated. The overlap
matrix of the projectors with the wavefunctions (fnl ) and the overlap matrices of
the wavefunctions themselves (smat). The fnl matrix is involved in two types of
calculations where the parallel loop goes either over the bands or the projectors.
To avoid communication, two copiesof the array are kept on each processor.Each
copy holds the data neededin one of the distribution patterns. This schemeneeds
only a small adaptation of the code described above.
The distribution of the overlap matrices (smat) causessome more problems. In
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Figure 14. Percentage of total cpu time spend in global communication routines (solid line) and
in Fourier transform routines (dashed line) for a system of 64 silicon atoms on a Cray T3E/600
computer.

addition to the adaptation of the overlap routine, alsothe matrix multiply routines
neededfor the orthogonalization step have to be done in parallel. Although there
are libraries for these tasks available the complexity of the code is considerably
increased.

3.9.5 Summary

E�cien t parallel algorithms for the plane wave{pseudopotential density functional
theory method exist. Implementations of these algorithms are available and were
used in most of the large scale applications presented at the end of this paper
(Sect. 5). Depending on the sizeof the problem, excellent speedupscanbe achieved
even on computers with several hundreds of processors.The limitations presented
in the last paragraph are of importance for high{end applications. Together with
the extensionspresented, existing plane wave codesare well suited alsofor the next
generation of supercomputers.

4 Adv anced Techniques: Bey ond : : :

4.1 Intr oduction

The discussionup to this point revolved essentially around the \basic" ab initio
molecular dynamics methodologies. This meansin particular that classical nuclei
evolve in the electronic ground state in the microcanonical ensemble. This com-
bination allows already a multitude of applications, but many circumstancesexist
where the underlying approximations are unsatisfactory. Among these casesare
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situations where

� it is necessaryto keeptemperature and /or pressureconstant (such as during
journeys in phasediagrams or in the investigation of solid{state phasetransi-
tions),

� there is a su�cien t population of excited electronic states(such as in materials
with a small or vanishingelectronicgap) or dynamical motion occursin a single
excited states (such as after photoexcitation events),

� light nuclei are involved in crucial steps of a process(such as in studies of
proton transfer or muonium impurities).

In the following subsectionstechniques are introduced which transcedetheselimi-
tations. Thus, the realm of ab initio molecular dynamics is considerably increased
beyond the basic setup as discussedin general terms in Sect. 2 and concerning
its implementation in Sect. 3. The presented \adv anced techniques" are selected
becausethey are available in the current versionof the CPMDpackage 142, but their
implementation is not discussedin detail here.

4.2 Beyond Micr ocanonics

4.2.1 Intr oduction

In the framework of statistical mechanics all ensembles can be formally obtained
from the microcanonical or N V E ensemble { where particle number, volume and
energy are the external thermodynamic control variables { by suitable Laplace
transforms of its partition function; note that V is usedfor volume when it comes
to labeling the various ensembles in Sect. 4 and its subsections. Thermodynam-
ically this corresponds to Legendre transforms of the associated thermodynamic
potentials where intensive and extensive conjugate variables are interchanged. In
thermodynamics, this task is achieved by a \su�cien tly weak" coupling of the
original system to an appropriate in�nitely large bath or reservoir via a link that
establishesthermodynamic equilibrium. The same basic idea is instrumental in
generating distribution functions of such ensembles by computer simulation 98;250.
Here, two important special casesare discussed:thermostats and barostats, which
are used to impose temperature instead of energy and / or pressure instead of
volume as external control parameters 12;445;270;585;217.

4.2.2 Imposing Temperature: Thermostats

In the limit of ergodic sampling the ensemble createdby standard moleculardynam-
ics is the microcanonicalor N V E ensemble where in addition the total momentum
is conserved 12;270;217. Thus, the temperature is not a control variable in the New-
tonian approach to molecular dynamics and whenceit cannot be preselectedand
�xed. But it is evident that also within molecular dynamics the possibility to con-
trol the averagetemperature (as obtained from the averagekinetic energy of the
nuclei and the energy equipartition theorem) is welcomefor physical reasons. A
deterministic algorithm of achieving temperature control in the spirit of extended
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systemdynamics 14 by a sort of dynamical friction mechanism wasdevisedby Nos�e
and Hoover 442;443;444;307, seee.g. Refs. 12;445;270;585;217 for reviews of this well{
establishedtechnique. Thereby, the canonical or N V T ensemble is generated in
the caseof ergodic dynamics.

As discussedin depth in Sect. 2.4, the Car{P arrinello approach to ab initio
molecular dynamics works due to a dynamical separation between the physical
and �ctitious temperatures of the nuclear and electronic subsystems,respectively.
This separability and thus the associated metastabilit y condition breaksdown if the
electronicexcitation gapbecomescomparableto the thermal energyor smaller, that
is in particular for metallic systems. In order to satisfy neverthelessadiabaticit y in
the senseof Car and Parrinello it wasproposedto coupleseparatethermostats 583 to
the classical�elds that stem from the electronic degreesof freedom 74;204. Finally ,
the (long{term) stabilit y of the molecular dynamics propagation can be increased
due to the samemechanism, which enablesone to increasethe time step that still
allowsfor adiabatic time evolution 638. Note that thesetechnical reasonsto include
additional thermostats are by construction absent from any Born{Opp enheimer
molecular dynamics scheme.

It is well{known that the standard Nos�e{Hoover thermostat method su�ers from
non{ergodicit y problems for certain classesof Hamiltonians, such as the harmonic
oscillator 307. A closely related technique, the so{called Nos�e{Hoover{chain ther-
mostat 388, cures that problem and assuresergodic sampling of phasespaceeven
for the pathological harmonic oscillator. This is achieved by thermostatting the
original thermostat by another thermostat, which in turn is thermostatted and so
on. In addition to restoring ergodicit y even with only a few thermostats in the
chain, this technique is found to be much more e�cien t in imposing the desired
temperature.

Nos�e{Hoover{chain thermostatted Car{P arrinello molecular dynamics was in-
troduced in Ref. 638. The underlying equationsof motion read

M I •R I = �r I E KS � M I
_� 1 _R I (268)
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for the electronic contribution. Theseequations are written down in density func-
tional language(see Eq. (75) and Eq. (81) for the de�nitions of E KS and H KS

e ,
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respectively), but completely analoguesexpressionsare operational if other elec-
tronic structure approachesare usedinstead. Using separatethermostatting baths
f � k g and f � l g, chains composedof K and L coupled thermostats are attached to
the nuclear and electronic equationsof motion, respectively.

By inspection of Eq. (268) it becomesintuitiv ely clearhow the thermostat works:
_� 1 can be consideredas a dynamical friction coe�cien t. The resulting \dissipativ e
dynamics" leadsto non{Hamiltonian o w, but the friction term can aquire positive
or negative sign according to its equation of motion. This leads to damping or
accelerationof the nuclei and thus to cooling or heating if the instantaneouskinetic
energy of the nuclei is higher or lower than kB T which is preset. As a result,
this extended system dynamics can be shown to produce a canonical ensemble
in the subspaceof the nuclear coordinates and momenta. In spite of being non{
Hamiltonian, Nos�e{Hoover ({chain) dynamics is also distinguished by conserving
an energyquantit y of the extendedsystem,seeEq. (272).

The desiredaveragephysical temperature is given by T and g denotesthe num-
ber of dynamical degreesof freedomto which the nuclear thermostat chain is cou-
pled (i.e. constraints imposedon the nuclei have to be subtracted). Similarly , T 0

e is
the desired�ctitious kinetic energyof the electronsand 1=� e is the associated tem-
perature. In principle, � e should be chosensuch that 1=� e = 2T0

e =Ne where Ne is
the number of dynamical degreesof freedomneededto parameterizethe wavefunc-
tion minusthe number of constraint conditions. It is found that this choicerequires
a very accurateintegration of the resulting equationsof motion (for instanceby us-
ing a high{order Suzuki{Yoshida integrator, seeSect. VI.A in Ref. 638). However,
relevant quantities are rather insensitive to the particular value so that N e can be
replacedheuristically by N 0

e which is the number of orbitals � i usedto expand the
wavefunction 638.

The choice of the \mass parameters" assignedto the thermostat degreesof
freedomshould be made such that the overlap of their power spectra and the ones
the thermostatted subsystemsis maximal 74;638. The relations
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assuresthis if ! n is a typical phononor vibrational frequencyof the nuclear subsys-
tem (say of the order of 2000 to 4000cm� 1) and ! e is su�cien tly large compared
to the maximum frequency! max

n of the nuclear power spectrum (say 10 000 cm� 1

or larger). The integration of these equations of motion is discussedin detail in
Ref. 638 using the velocity Verlet / ra ttle algorithm.

In someinstances,for exampleduring equilibration runs, it is advantageousto
go one step further and to actually couple one chain of Nos�e{Hoover thermostats
to every individual nuclear degreeof freedomakin to what is done in path integral
molecular dynamics simulations 637;644;646, seealso Sect. 4.4. This so{called \mas-
sive thermostatting approach" is found to accelerateconsiderably the expensive
equilibration periods within ab initio molecular dynamics, which is useful for both
Car{P arrinello and Born{Opp enheimerdynamics.
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In classicalmolecular dynamics two quantities are conserved during a simula-
tion, the total energy and the total momentum. The same constants of motion
apply to (exact) microcanonical Born{Opp enheimer molecular dynamics because
the only dynamical variables are the nuclear positions and momenta as in classi-
cal molecular dynamics. In microcanonicalCar{P arrinello molecular dynamics the
total energyof the extended dynamical system composedof nuclear and electronic
positions and momenta, that is Econs as de�ned in Eq. (48), is also conserved, see
e.g. Fig. 3 in Sect.2.4. There is alsoa conserved energyquantit y in the caseof ther-
mostatted molecular dynamics according to Eq. (268){(269). Instead of Eq. (48)
this constant of motion reads
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for Nos�e{Hoover{chain thermostatted canonical Car{P arrinello molecular dynam-
ics 638.

In microcanonicalCar{P arrinello molecular dynamics the total nuclear momen-
tum P n is no more a constant of motion asa result of the �ctitious dynamicsof the
wavefunction; this quantit y as well as other symmetries and associated invariants
are discussedin Ref. 467. However, a generalizedlinear momentum which embraces
the electronic degreesof freedom
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X
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E
+ c.c. (273)

can be de�ned 467;436; P I = M I _R I . This quantit y is a constant of motion in
unthermostatted Car{P arrinello moleculardynamicsdue to an exact cancellationof
the nuclear and electroniccontributions 467;436. As a result, the nuclearmomentum
P n uctuates during such a run, but in practice P n is conserved on the averageas
shown in Fig. 1 of Ref. 436. This is analoguesto the behavior of the physical total
energyEphys Eq. (49), which uctuates slightly due to the presenceof the �ctitious
kinetic energyof the electronsTe Eq. (51).

As recently outlined in detail it is clear that the coupling of more than one
thermostat to a dynamical system, such as done in Eq. (268){(269), destroys the
conservation of momentum 436, i.e. P CP is no more an invariant. In unfavorable
cases,in particular in small{gap or metallic regimeswhere there is a substantial
coupling of the nuclear and electronic subsystems,momentum can be transferred
to the nuclear subsystemsuch that P n grows in the courseof a simulation. This
problem can be cured by controlling the nuclear momentum (using e.g. scaling or
constraint methods) so that the total nuclear momentum P n remains small 436.
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4.2.3 Imposing Pressure: Barostats

Keeping the pressureconstant is a desirablefeature for many applications of molec-
ular dynamics. The conceptof barostats and thus constant{pressure molecular dy-
namicswasintroducedin the framework of extendedsystemdynamicsby HansAn-
dersen14, seee.g. Refs.12;270;585;217 for introductions. This method wasdevisedto
allow for isotropic uctuations in the volume of the supercell. A powerful extension
consistsin alsoallowing for changesof the shape of the supercell to occur asa result
of applying external pressure459;460;461;678, including the possibility of non{isotropic
external stress 460; the additional �ctitious degreesof freedom in the Parrinello{
Rahman approach 459;460;461 are the lattice vectors of the supercell, whereasthe
strain tensor is the dynamical variable in the Wentzcovitch approach 678. These
variable{cell approaches make it possible to study dynamically structural phase
transitions in solids at �nite temperatures. With the birth of ab initio molecu-
lar dynamics both approaches were combined starting out with isotropic volume
uctuations 94 �a la Andersen 14 and followed by Born{Opp enheimer 681;682 and
Car{P arrinello 201;202;55;56 variable{cell techniques.

The basic idea to allow for changesin the cell shape consists in constructing
an extendedLagrangian where the primitiv e Bravais lattice vectors a1, a2 and a3

of the simulation cell are additional dynamical variables similar to the thermostat
degreeof freedom � , seeEq. (268). Using the 3 � 3 matrix h = [a1; a2; a3] (which
fully de�nes the cell with volume 
) the real{spaceposition R I of a particle in this
original cell can be expressedas

R I = hS I (274)

where SI is a scaled coordinate with components SI ;u 2 [0; 1] that de�nes the
position of the I th particle in a unit cube (i.e. 
 unit = 1) which is the scaled
cell 459;460, seeSect. 3.1 for somede�nitions. The resulting metric tensor G = h t h
converts distances measured in scaled coordinates to distances as given by the
original coordinates according to Eq. (106) and periodic boundary conditions are
applied using Eq. (107).

In the caseof ab initio molecular dynamics the orbitals have to be expressed
suitably in the scaledcoordinates s = h � 1r . The normalized original orbitals � i (r )
as de�ned in the unscaledcell h are transformed according to

� i (r ) =
1

p



� i (s) (275)

satisfying
Z



dr � ?

i (r )� i (r ) =
Z


 unit

ds � ?
i (s)� i (s) (276)

so that the resulting charge density is given by

n(r ) =
1



n (s) : (277)

in the scaledcell, i.e. the unit cube. Importantly , the scaled�elds � i (s) and thus
their charge density n(s) do not depend on the dynamical variables associated to
the cell degreesof freedomand thus can be varied independently from the cell; the
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original unscaled�elds � i (r ) do depend on the cell variablesh via the normalization
by the cell volume 
 = det h as evidencedby Eq. (275).

After thesepreliminaries a variable{cell extendedLagrangianfor ab initio molec-
ular dynamics can be postulated 202;201;55

L =
X

i

�
D

_� i (s)
�
�
� _� i (s)

E
� E KS [f � i g; f hS I g]

+
X

ij

� ij (h� i (s) j� j (s) i � � ij )

+
X

I

1
2

M I

�
_St

I G_SI

�
+

1
2

W Tr _h t _h � p 
 ; (278)

with additional nine dynamical degreesof freedom that are associated to the lat-
tice vectors of the supercell h. This constant{pressure Lagrangian reducesto the
constant{v olume Car{P arrinello Lagrangian, seee.g. Eq. (41) or Eq. (58), in the
limit _h ! 0 of a rigid cell (apart from a constant term p 
). Here, p de�nes the
externally applied hydrostatic pressure,W de�nes the �ctitious massor inertia pa-
rameter that controls the time{scale of the motion of the cell h and the interaction
energyE KS is of the form that is de�ned in Eq. (75). In particular, this Lagrangian
allows for symmetry{breaking uctuations { which might be necessaryto drive
a solid{state phase transformation { to take place spontaneously. The resulting
equationsof motion read

M I •SI ;u = �
3X

v=1

@E KS

@R I ;v

�
h t � � 1

vu
� M I

3X

v=1

3X

s=1

G� 1
uv

_Gvs _SI ;s (279)

� •� i (s) = �
� E KS

� � ?
i (s)

+
X

j

� ij � j (s) (280)

W •huv = 

3X

s=1

�
� tot

us � p � us
� �

h t
� � 1

sv ; (281)

where the total internal stresstensor

� tot
us =

1



X

I

M I

�
_St

I G_SI

�

us
+ � us (282)

is the sum of the thermal contribution due to nuclear motion at �nite temperature
and the electronic stress tensor 440;441 � which is de�ned in Eq. (189) and the
following equations,seeSect. 3.4.

Similar to the thermostat casediscussedin the previous section one can rec-
ognize a sort of frictional feedback mechanism. The average internal pressure
h(1=3) Tr � tot i equals the externally applied pressurep as a result of maintain-
ing dynamically a balance between p � and the instantaneous internal stress � tot

by virtue of the friction coe�cien t / _G in Eq. (279). Ergodic tra jectories obtained
from solving the associated ab initio equations of motion Eq. (279){(281) lead to
a sampling according to the isobaric{isoenthalpic or N pH ensemble. However, the
generateddynamics is �ctitious similar to the constant{temp erature casediscussed
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in the previous section. The isobaric{isothermal or N pT ensemble is obtained by
combining barostats and thermostats, seeRef. 389 for a general formulation and
Ref. 391 for reversible integration schemes.

An important practical issuein isobaric ab initio molecular dynamics simula-
tions is related to problems causedby using a �nite basis set, i.e. \incomplete{
basis{set" or Pulay{t ype contributions to the stress, seealso Sect. 2.5. Using a
�nite plane wave basis(together with a �nite number of k{p oints) in the presence
of a uctuating cell 245;211 one can either �x the number of plane wavesor �x the
energy cuto�; seeEq. (122) for their relation according to a rule{of{th umb. A
constant number of plane wavesimplies no Pulay stressbut a decreasingprecision
of the calculation asthe volume of the supercell increases,whenceleading to a sys-
tematically biased(but smooth) equation of state. The constant cuto� procedure
hasbetter convergenceproperties towards the in�nite{basis{set limit 245. However,
it producesin generalunphysical discontin uities in the total energyand thus in the
equation of state at volumes where the number of plane waves changesabruptly ,
seee.g. Fig. 5 in Ref. 211.

Computationally , the number of plane waveshas to be �xed in the framework
of Car{P arrinello variable{cell molecular dynamics 94;202;201;55, whereasthe energy
cuto� can easily be kept constant in Born{Opp enheimer approaches to variable{
cell moleculardynamics681;682. Sticking to the Car{P arrinello technique a practical
remedy 202;55 to this problem consists in modifying the electronic kinetic energy
term Eq. (173) in a plane wave expansionEq. (172) of the Kohn{Sham functional
E KS Eq. (75)

Ekin =
X

i

f i

X

q

1
2

jG j2 jci (q)j2 ; (283)

wherethe unscaledG and scaledq = 2� g reciprocal lattice vectorsare interrelated
via the cell h according to Eq. (111) (thus Gr = qs) and the cuto� Eq. (121)
is de�ned as (1=2) jG j2 � Ecut for a �xed number of q{v ectors, seeSect. 3.1.
The modi�ed kinetic energyat the �{p oint of the Brillouin zoneassociated to the
supercell reads

~Ekin =
X

i

f i

X

q

1
2

�
�
� ~G

�
A; � ; E e�

cut

� �
�
�
2

jci (q)j2 (284)

�
�
� ~G

�
A; � ; E e�

cut

� �
�
�
2

= jG j2 + A

(

1 + erf

"
1
2 jG j2 � E e�

cut

�

#)

(285)

whereA, � and E e�
cut arepositivede�nite constants and the number of scaledvectors

q, that is the number of plane waves,is strictly kept �xed.
In the limit of a vanishing smoothing (A ! 0; � ! 1 ) the constant number of

plane wave result is recovered. In limit of a sharp step function (A ! 1 ; � ! 0)
all plane waves with (1=2) jG j2 � E e�

cut have a negligible weight in ~Ekin and are
thus e�ectiv ely suppressed.This situation mimics a constant cuto� calculation at
an \e�ectiv e cuto� " of � E e�

cut within a constant number of plane wave scheme. For
this trick to work note that Ecut � E e�

cut has to be satis�ed. In the caseA > 0 the
electronic stress tensor � given by Eq. (189) features an additional term (due to

99



changesin the \e�ectiv e basisset" as a result of variations of the supercell), which
is related to the Pulay stress219;660.

Finally , the strength of the smoothing A > 0 should be kept asmodest aspossi-
ble sincethe modi�cation Eq. (284) of the kinetic energyleadsto an increaseof the
highest frequency in the electronic power spectrum / A. This implies a decrease
of the permissible molecular dynamics time step � tmax according to Eq. (55). It
is found that a suitably tuned set of the additional parameters (A; � ; E e�

cut ) leads
to an e�cien tly converging constant{pressure scheme in conjunction with a fairly
small number of plane waves 202;55. Note that the cuto� was kept strictly con-
stant in applications of the Born{Opp enheimerimplementation 679 of variable{cell
molecular dynamics 681;682, but the smoothing scheme presented here could be
implemented in this caseas well. An e�cien t method to correct for the discontin u-
ities of static total energy calculations performed at constant cuto� was proposed
in Ref. 211. Evidently , the best way to deal with the incomplete{basis{set problem
is to increasethe cuto� such that the resulting artifacts becomenegligible on the
physically relevant energyscale.

4.3 Beyond Ground States

4.3.1 Intr oduction

Extending ab initio molecular dynamics to a singlenon{in teracting excited state is
straightforward in the framework of wavefunction{basedmethods such asHartree{
Fock 365;254;191;379;281;284;316;293, generalizedvalencebond (GVB) 282;283;228;229;230,
complete active space SCF (CASSCF) 566;567, or full con�guration interaction
(FCI) 372 approaches, seeSect. 2.7. However, these methods are computationally
quite demanding { given present{da y algorithms and hardware. Promising steps
in the direction of including several excited states and non{adiabatic couplingsare
also made 385;386;387;71.

Density functional theory o�ers an alternativ e route to approximately solving
electronic structure problems and recent approaches to excited{state properties
within this framework look promising. In the following, two limiting and thus
certainly idealistic situations will be considered,which are characterized by either

� many closely{spacedexcited electronicstateswith a broad thermal distribution
of fractional occupation numbers, or by

� a single electronic state that is completely decoupled from all other states.

The �rst situation is encountered for metallic systemswith collective excitations or
for materials at high temperatures comparedto the Fermi temperature. It is noted
in passingthat associating fractional occupation numbersto one{particle orbitals is
alsooneroute to go beyond a single{determinant ansatzfor constructing the charge
density 458;168. The secondcaseappliesfor instanceto large{gap molecularsystems
which complete a chemical reaction in a single excited state as a result of e.g. a
vertical homo / lumo or instantaneousone{particle / one{hole photoexcitation.
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4.3.2 Many Excited States: Free Energy Functional

The free energy functional approach to excited{state molecular dynamics 5;7 is a
mean{�eld approach similar in spirit to Ehrenfestmoleculardynamics,seeSect.2.2.
The total wavefunction is �rst factorized into a nuclear and an electronic wave-
function Eq. (3) followed by taking the classical limit for the nuclear subsystem.
Thus, classicalnuclei move in the average�eld as obtained from averagingover all
electronic states Eq. (25). A di�erence is that according to Ehrenfest molecular
dynamics the electronsare propagated in real time and can perform non{adiabatic
transitions by virtue of direct coupling terms / d k l betweenall states 	 k subject
to energyconservation, seeSect. 2.2 and in particular Eqs. (27){(29). The average
force or Ehrenfest force is obtained by weighting the di�eren t statesk according to
their diagonal density matrix elements (that is / jck (t)j2 in Eq. (27)) whereasthe
coherent transitions are driven by the o�{diagonal contributions (which are / c?

k cl ,
seeEq. (27)).

In the free energy approach 5;7, the excited states are populated according to
the Fermi{Dirac (�nite{temp erature equilibrium) distribution which is based on
the assumption that the electrons \equilibrate" more rapidly than the timescale
of the nuclear motion. This means that the set of electronic states evolves at a
given temperature \isothermally" (rather than adiabatically) under the inclusion
of incoherent electronic transitions at the nuclei move. Thus, instead of comput-
ing the force acting on the nuclei from the electronic ground{state energy it is
obtained from the electronic free energy as de�ned in the canonical ensemble. By
allowing such electronic transitions to occur the free energy approach transcends
the usual Born{Opp enheimer approximation. However, the approximation of an
instantaneousequilibration of the electronic subsystemimplies that the electronic
structure at a givennuclearcon�guration f R I g is completely independent from pre-
vious con�gurations alonga moleculardynamicstra jectory. Due to this assumption
the notion \free energyBorn{Opp enheimerapproximation" was coined in Ref. 101

in a similar context. Certain non{equilibrium situations canalsobe modeledwithin
the free energyapproach by starting o� with an initial orbital occupation pattern
that does not correspond to any temperature in its thermodynamic meaning, see
e.g. Refs. 570;572;574 for such applications.

The free energy functional as de�ned in Ref. 5 is introduced most elegantly 7;9

by starting the discussionfor the special caseof non{in teracting Fermions

H s = �
1
2

r 2 �
X

I

Z I

jR I � r j
(286)

in a �xed external potential due to a collection of nuclei at positions f R I g. The
associated grand partition function and its thermodynamic potential (\grand free
energy") are given by

� s(�V T) = det2 (1 + exp[� � (H s � � )]) (287)


 s(�V T) = � kB T ln � s(�V T) ; (288)

where � is the chemical potential acting on the electrons and the square of the
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determinant stems from considering the spin{unpolarized special caseonly. This
reducesto the well{known grand potential expression


 s(�V T) = � 2kB T ln det (1 + exp[� � (H s � � )])

= � 2kB T
X

i

ln
�

1 + exp
h
� �

�
� ( i )

s � �
�i �

(289)

for non{in teracting spin{1/2 Fermions where f � ( i )
s g are the eigenvalues of a one{

particle Hamiltonian such as Eq. (286); here the standard identit y ln det M =
Tr ln M was invoked for positive de�nite M .

According to thermodynamics the Helmholtz free energy F (N V T) associated
to Eq. (288) can be obtained from an appropriate Legendretransformation of the
grand free energy 
( �V T)

F s(N VT) = 
 s(�V T) + �N +
X

I <J

Z I ZJ

jR I � R J j
(290)

by �xing the averagenumber of electronsN and determining � from the conven-
tional thermodynamic condition

N = �
�

@

@�

�

V T
: (291)

In addition, the internuclear Coulomb interactions betweenthe classicalnuclei were
included at this stage in Eq. (290). Thus, derivativesof the free energy Eq. (290)
with respect to ionic positions �r I F s de�ne forceson the nuclei that could be used
in a (hypothetical) molecular dynamics schemeusing non{in teracting electrons.

The interactions between the electrons can be \switc hed on" by resorting to
Kohn{Sham density functional theory and the concept of a non{in teracting refer-
encesystem. Thus, instead of using the simple one{particle Hamiltonian Eq. (286)
the e�ectiv e Kohn{Sham Hamiltonian Eq. (83) has to be utilized. As a result, the
grand free energyEq. (287) can be written as


 KS (�V T) = � 2kB T ln
�
det

�
1 + exp

�
� �

�
H KS � �

��� �
(292)

H KS = �
1
2

r 2 �
X

I

Z I

jR I � r j
+ VH (r ) +

� 
 xc [n]
� n(r )

(293)

H KS � i = � i � i (294)

where
 xc is the exchange{correlation functional at �nite temperature. By virtue of
Eq. (289) one can immediately seethat 
 KS is nothing elsethan the \F ermi{Dirac
weighted sum" of the bare Kohn{Sham eigenvaluesf � i g. Whence, this term is the
extension to �nite temperatures of the \band{structure energy" (or of the \sum
of orbital energies"in the analoguesHartree{Fock case604;418) contribution to the
total electronic energy, seeEq. (86).

In order to obtain the correct total electronic free energy of the interacting
electronsasde�ned in Eq. (86) the corresponding extra terms (properly generalized
to �nite temperatures) have to be included in 
 KS . This �nally allows one to write
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down the generalization of the Helmholtz free energy of the interacting many{
electron case

F KS (N VT) = 
 KS (�V T) + �
Z

dr n(r ) +
X

I <J

Z I ZJ

jR I � R J j

�
1
2

Z
dr VH (r ) n(r ) + 
 xc �

Z
dr

� 
 xc [n]
� n(r )

n(r ) (295)

in the framework of a Kohn{Sham{lik e formulation. The corresponding one{
particle density at the �{p oint is given by

n(r ) =
X

i

f i (� ) j� i (r )j2 (296)

f i (� ) = (1 + exp[� (� i � � )]) � 1 ; (297)

where the fractional occupation numbers f f i g are obtained from the Fermi{Dirac
distribution at temperature T in terms of the Kohn{Sham eigenvaluesf � i g. Finally ,
ab initio forcescan be obtained as usual from the nuclear gradient of F KS , which
makesmolecular dynamics possible.

By construction, the total free energy Eq. (295) reducesto that of the non{
interacting toy model Eq. (290) once the electron{electron interaction is switched
o�. Another useful limit is the ground{state limit � ! 1 where the free energy
F KS (N VT) yields the standard Kohn{Sham total energy expressionE KS as de-
�ned in Eq. (86) after invoking the appropriate limit 
 xc ! Exc as T ! 0. Most
importantly , stabilit y analysis 5;7 of Eq. (295) shows that this functional sharesthe
samestationary point asthe exact �nite{temp erature functional due to Mermin 424,
seee.g. the textbooks 458;168 for introductions to density functional formalisms at
�nite temperatures. This implies that the self{consistent density, which de�nes
the stationary point of F KS , is identical to the exact one. This analysis reveals
furthermore that, unfortunately, this stationary point is not an extremum but a
saddle point so that no variational principle and, numerically speaking, no direct
minimization algorithms can be applied. For the same reason a Car{P arrinello
�ctitious dynamics approach to molecular dynamics is not a straightforward op-
tion, whereasBorn{Opp enheimer dynamics basedon diagonalization can be used
directly.

The band{structure energy term is evaluated in the CPMDpackage 142 by di-
agonalizing the Kohn{Sham Hamiltonian after a suitable \preconditioning" 5, see
Sect. 3.6.2. Speci�cally , a second{orderTrotter approximation is used

Tr exp
�
� � H KS �

=
X

i

exp[� � � i ] =
X

i

� ii (� ) (298)
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f exp[� � � � i ]g
P (300)
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in order to compute �rst the diagonal elements � ii (� � ) of the \high{temp erature"
Boltzmann operator � (� � ); here � � = � =P and P is the Trotter \time slice" as
introduced in paragraph Ab Initio Path Integrals: Statics. To this end, the kinetic
and potential energiescanbe conveniently evaluated in reciprocal and real space,re-
spectively, by using the split{op erator / FFT technique 183. The Kohn{Sham eigen-
values� i are �nally obtained from the density matrix via � i = � (1=� � ) ln � ii (� � ).
They are usedin order to compute the occupation numbers f f i g, the density n(r ),
the band{structure energy 
 KS , and thus the free energyEq. (295).

In practice a diagonalization / density{mixing scheme is employed in order to
compute the self{consistent density n(r ). Grossly speaking a suitably constructed
trial input density n in (seee.g. the Appendix of Ref. 571 for such a method) is used
in order to compute the potential V KS [nin ]. Then the lowest{order approximant
to the Boltzmann operator Eq. (300) is diagonalized using an iterativ e Lanczos{
type method. This yields an output density nout and the corresponding free energy
F KS [nout ]. Finally , the densitiesare mixed and the former stepsare iterated until a
stationary solution nscf of F KS [nscf ] is achieved, seeSect. 3.6.4 for somedetails on
such methods. Of coursethe most time{consuming part of the calculation is in the
iterativ e diagonalization. In principle this is not required, and it should be possible
to compute the output density directly from the Fermi{Dirac density matrix even
in a linear scaling scheme 243, thus circumventing the explicit calculation of the
Kohn{Sham eigenstates. However, to date e�orts in this direction have failed, or
given methods which are too slow to be useful 9.

As a method, molecular dynamics with the free energy functional is most ap-
propriate to use when the excitation gap is either small, or in caseswhere the
gap might closeduring a chemical transformation. In the latter caseno instabil-
ities are encountered with this approach, which is not true for ground{state ab
initio molecular dynamics methods. The price to pay is the quite demanding it-
erative computation of well{converged forces. Besidesallowing such applications
with physically relevant excitations this method can alsobe straightforwardly com-
bined with k{p oint sampling and applied to metals at \zero" temperature. In
this case, the electronic \temp erature" is only used as a smearing parameter of
the Fermi edgeby introducing fractional occupation numbers, which is known to
improve greatly the convergenceof theseground{state electronic structure calcula-
tions 220;232;185;676;680;343;260;344;414;243.

Finite{temp erature expressionsfor the exchange{correlation functional 
 xc are
available in the literature. However, for most temperatures of interest the correc-
tions to the ground{state expressionare small and it seemsjusti�ed to useone of
the various well{established parameterizations of the exchange{correlation energy
Exc at zero temperature, seeSect. 2.7.

4.3.3 A Single Excited State: S1{Dynamics

For large{gap systemswith well separatedelectronic states it might be desirable
to single out a particular state in order to allow the nuclei to move on the asso-
ciated excited state potential energy surface. Approaches that rely on fractional
occupation numbers such as ensemble density functional theories { including the
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free energy functional discussedin the previous section { are di�cult to adapt for
caseswhere the symmetry and / or spin of the electronic state should be �xed 168.
An early approach in order to selecta particular excited state was basedon intro-
ducing a \quadratic restoring potential" which vanishesonly at the eigenvalue of
the particular state 417;111.

A method that combines Roothaan's symmetry{adapted wavefunctions with
Kohn{Sham density functional theory wasproposedin Ref. 214 and usedto simulate
a photoisomerizationvia moleculardynamics. Viewed from Kohn{Sham theory this
approach consistsin building up the spin density of an open{shell systembasedon
a symmetry{adapted wavefunction that is constructed from spin{restricted deter-
minants (the \microstates"). Viewed from the restricted open{shell Hartree{Fock
theory �a la Roothaan it amounts essentially to replacingHartree{Fock exchangeby
an approximate exchange{correlation density functional. This procedure leads to
an orbital{dep endent density functional which was formulated explicitely for the
�rst{excited singlet state S1 in Ref. 214. The relation of this approach to previ-
ous theories is discussedin somedetail in Ref. 214. In particular, the successof the
closely{related Ziegler{Rauk{Baerends\sum methods" 704;150;600 wasan important
stimulus. More recently several papers 252;439;193;195;196 appeared that are similar
in spirit to the method of Ref. 214. The approach of Refs. 193;195;196 can be viewed
as a generalizationof the special case(S1 state) worked out in Ref. 214 to arbitrary
spin states. In addition, the generalizedmethod 193;195;196 was derived within the
framework of density functional theory, whereasthe wavefunction perspective was
the starting point in Ref. 214.

In the following, the method is outlined with the focus to perform molecular
dynamics in the S1 state. Promoting oneelectron from the homo to the lumo in a
closed{shellsystemwith 2n electronsassignedto n doubly occupiedorbitals (that is
spin{restricted orbitals that have the samespatial part for both spin up � and spin
down � electrons)leadsto four di�eren t excited wavefunctionsor determinants, see
Fig. 15 for a sketch. Two states jt1i and jt2i are energetically degeneratetriplets
t whereasthe two states jm1i and jm2 i are not eigenfunctions of the total spin
operator and thus degeneratemixed states m (\spin contamination"). Note in
particular that the m statesdo not correspond { as is well known { to singlet states
despite the suggestive occupation pattern in Fig. 15.

However, suitable Clebsch{Gordon projections of the mixed states jm1i and
jm2 i yield another triplet state jt3i and the desired�rst excited singlet or S1 state
js1 i . Here, the ansatz 214 for the total energyof the S1 state is given by

ES1 [f � i g] = 2E KS
m [f � i g] � E KS

t [f � i g] (301)

where the energiesof the mixed and triplet determinants

E KS
m [f � i g] = Ts[n] +

Z
dr Vext (r )n(r ) +

1
2

Z
dr VH (r )n(r ) + Exc [n�

m ; n�
m ] (302)

E KS
t [f � i g] = Ts[n] +

Z
dr Vext (r )n(r ) +

1
2

Z
dr VH (r )n(r ) + Exc [n�

t ; n�
t ] (303)

are expressedin terms of (restricted) Kohn{Sham spin{density functionals con-
structed from the set f � i g, cf. Eq. (75). The associated S1 wavefunction is given
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Figure 15. Four possible determinan ts jt 1 i , jt2 i , jm1 i and jm2 i as a result of the promotion of a
single electron from the homo to the lumo of a closed shell system, see text for further details.
Taken from Ref. 214 .

by

j s1 [f � i g] i =
p

2 j m [f � i g] i � j t [f � i g] i (304)

where the \microstates" m and t are both constructed from the sameset f � i g of
n + 1 spin{restricted orbitals. Using this particular set of orbitals the total density

n(r ) = n�
m (r ) + n�

m (r ) = n�
t (r ) + n�

t (r ) (305)

is of course identical for both the m and t determinants whereastheir spin den-
sities clearly di�er, seeFig. 16. Thus, the decisive di�erence between the m and
t functionals Eq. (302) and Eq. (303), respectively, comes exclusively from the
exchange{correlation functional Exc , whereaskinetic, external and Hartree energy
are identical by construction. Note that this basic philosophy can be generalized
to other spin{states by adapting suitably the microstates and the corresponding
coe�cien ts in Eq. (301) and Eq. (304).

Having de�ned a density functional for the �rst excited singlet state the
corresponding Kohn{Sham equations are obtained by varying Eq. (301) using
Eq. (302) and Eq. (303) subject to the orthonormalit y constraint

P n +1
i;j =1 � ij (h� i j

� j i � � ij ). Following this procedurethe equation for the doubly occupied orbitals
i = 1; : : : ; n � 1 reads

�
�

1
2

r 2 + VH (r ) + Vext (r )

+ V �
xc [n�

m (r ); n�
m (r )] + V �

xc [n�
m (r ); n�

m (r )]

�
1
2

V �
xc [n�

t (r ); n�
t (r )] �

1
2

V �
xc [n�

t (r ); n�
t (r )]

�
� i (r ) =

n +1X

j =1

� ij � j (r ) (306)
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Figure 16. Four patterns of spin densities n �
t , n �

t , n �
m , and n �

m correspondin g to the two spin{
restricted determinan ts jt i and jmi sketched in Fig. 15, see text for further details. Taken from
Ref. 214 .

whereas
�

1
2

h
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1
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r 2 + VH (r ) + Vext (r )
i
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r 2 + VH (r ) + Vext (r )
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+ V �
xc [n�

m (r ); n�
m (r )] �

1
2

V �
xc [n�

t (r ); n�
t (r )]

�
� b(r ) =

n +1X

j =1

� bj � j (r ) . (308)

are two di�er ent equations for the two singly{occupied open{shell orbitals a and
b, respectively, see Fig. 15. Note that these Kohn{Sham{lik e equations fea-
ture an orbital{dep endent exchange{correlation potential where V �

xc [n�
m ; n�

m ] =
� Exc [n�

m ; n�
m ]=� n�

m and analoguesde�nitions hold for the � and t cases.
The set of equations Eq. (306){(308) could be solved by diagonalization of the

corresponding \restricted open{shell Kohn{Sham Hamiltonian" or alternativ ely by
direct minimization of the associated total energy functional. The algorithm pro-
posedin Ref. 240, which allows to properly and e�cien tly minimize such orbital{
dependent functionals including the orthonormalit y constraints, was implemented
in the CPMDpackage142. Basedon this minimization technique Born{Opp enheimer
molecular dynamics simulations can be performed in the �rst excited singlet state.
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The alternativ e Car{P arrinello formulation seemsinconvenient becausethe singly
and doubly occupied orbitals would have to be constrained not to mix.

4.4 Beyond Classical Nuclei

4.4.1 Intr oduction

Up to this point the nuclei wereapproximated asclassicalpoint particles ascustom-
arily done in standard molecular dynamics. There are, however, many situations
wherequantum dispersionbroadeningand tunneling e�ects play an important role
and cannot be neglected if the simulation aims at being realistic { which is the
genericgoal of ab initio simulations. The ab initio path integral technique 395 and
its extensionto quasiclassicaltime evolution 411 is able to cope with such situations
at �nite temperatures. It is also implemented in the CPMDpackage142. The central
idea is to quantize the nuclei using Feynman'spath integrals and at the sametime
to include the electronic degreesof freedomakin to ab initio molecular dynamics {
that is \on{the{y". The main ingredients and approximations underlying the ab
initio path integral approach 395;399;644;404 are

� the adiabatic separationof electronsand nuclei wherethe electronsare kept in
their ground state without any coupling to electronically excited states(Born{
Oppenheimeror \clamp ed{nuclei" approximation),

� using a particular approximate electronicstructure theory in order to calculate
the interactions,

� approximating the contin uouspath integral for the nuclei by a �nite discretiza-
tion (Trotter factorization) and neglecting the indistinguishabilit y of identical
nuclei (Boltzmann statistics), and

� using �nite supercells with periodic boundary conditions and �nite sampling
times (�nite{size and �nite{time e�ects) as usual.

Thus, quantum e�ects such as zero{point motion and tunneling as well as thermal
uctuations are included at somepresettemperature without further simpli�cations
consisting e.g. in quasiclassicalor quasiharmonic approximations, restricting the
Hilb ert space,or in arti�cially reducing the dimensionality of the problem.

4.4.2 Ab Initio Path Integrals: Statics

For the purposeof introducing ab initio path integrals 395 it is convenient to start
directly with Feynman's formulation of quantum{statistical mechanics in terms
of path integrals as opposed to Schr•odinger's formulation in terms of wavefunc-
tions which was used in Sect. 2.1 in order to derive ab initio molecular dynamics.
For a generalintroduction to path integrals the reader is referred to standard text-
books187;188;334, whereastheir usein numerical simulations is discussedfor instance
in Refs. 233;126;542;120;124;646;407.

The derivation of the expressionsfor ab initio path integrals is basedon assuming
the non{relativistic standard Hamiltonian, seeEq. (2). The corresponding canoni-
cal partition function of a collection of interacting nuclei with positions R = f R I g
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and electronsr = f r i g can be written as a path integral

Z =
I 0

DR
I 0

Dr exp

"

�
1

�

Z �

�

0
d� L E

�
f _R I (� )g; f R I (� )g; f _r i (� )g; f r i (� )g

�
#

(309)

where

L E = T( _R ) + V (R ) + T(_r ) + V (r ) + V (R ; r )

=
X

I

1
2

M I

�
dR I

d�

� 2

+
X

I <J

e2Z I ZJ

jR I � R J j

+
X

i

1
2

me

�
dr i

d�

� 2

+
X

i<j

e2

jr i � r j j
�

X

I ;i

e2Z I

jR I � r i j
; (310)

denotesthe Euclidean Lagrangian. The primes in Eq. (309) indicate that the proper
sums over all permutations corresponding to Bose{Einstein and/or Fermi{Dirac
statistics have to be included. It is important to note that in Eq. (309) and (310)
the positions f R I g and f r i g arenot operatorsbut simply functions of the imaginary
time � 2 [0;

�

� ] which parameterizesuctuations around the classicalpath. This
implies that the dots denote here derivativeswith respect to imaginary time � as
de�ned in Eq. (310). According to Eq. (309) exact quantum mechanics at �nite
temperature T = 1=kB � is recovered if all closedpaths [f R I g; f r i g] of \length"

�

�
aresummedup and weighted with the exponential of the Euclideanaction measured
in units of

�

; atomic units will be usedagain from here on. The partial trace over
the electronic subsystemcan formally be written down exactly

Z =
I 0

DR exp

"

�
Z �

0
d�

�
T( _R ) + V(R )

�
#

Z [R ] ; (311)

with the aid of the inuence functional 187;334

Z [R ] =
I 0

Dr exp

"

�
Z �

0
d� (T( _r ) + V(r ) + V(R ; r ))

#

: (312)

Note that Z [R ] is a complicated and unknown functional for a given nuclear path
con�guration [f R I g]. As a consequencethe interactions betweenthe nuclei become
highly nonlocal in imaginary time due to memory e�ects.

In the standard Born{Opp enheimer or \clamp ed nuclei" approximation, see
Ref. 340 for instance, the nuclei are frozen in somecon�guration and the complete
electronic problem is solved for this single static con�guration. In addition to the
nondiagonal correction terms that are already neglectedin the adiabatic approxi-
mation, the diagonal terms are now neglectedas well. Thus the potential for the
nuclear motion is simply de�ned asthe bare electronic eigenvaluesobtained from a
seriesof �xed nuclear con�gurations.

In the statistical mechanics formulation of the problem Eq. (311){(312) the
Born{Opp enheimerapproximation amounts to a \quenchedaverage": at imaginary
time � the nuclei are frozen at a particular con�guration R (� ) and the electrons
explore their con�guration spacesubject only to that single con�guration. This
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implies that the electronic degreesof freedomat di�eren t imaginary times � and � 0

becomecompletelydecoupled.Thus, the inuence functional Z [R ] hasto be local in
� and becomesparticularly simple; a discussionof adiabatic correctionsin the path
integral formulation can be found in Ref. 101. For each � the inuence functional
Z [R ] is given by the partition function of the electronic subsystemevaluated for
the respective nuclear con�guration R (� ). Assuming that the temperature is small
compared to the gap in the electronic spectrum only the electronic ground state
with energy E0 (R (� )) (obtained from solving Eq. (20) without the internuclear
Coulomb repulsion term) is populated. This electronic ground state dominance
leadsto the following simple expression

Z [R ]BO = exp

"

�
Z �

0
d� E0(R (� ))

#

; (313)

which yields the �nal result

ZBO =
I

DR exp

"

�
Z �

0
d�

�
T( _R) + V (R ) + E0(R )

�
#

: (314)

Here nuclear exchangeis neglectedby assumingthat the nuclei are distinguishable
so that they can be treated within Boltzmann statistics, which corresponds to the
Hartree approximation for the nuclear density matrix. The presentation given here
follows Ref. 399 and alternativ e derivations were given in Sect. 2.3 of Refs. 124 and
in the appendix of Ref. 427. There, a wavefunction basis instead of the position
basisas in Eq. (312) wasformally usedin order to evaluate the inuence functional
due to the electrons.

The partition function Eq. (314) together with the Coulomb Hamiltonian Eq. (2)
leadsafter applying the lowest{order Trotter factorization 334 to the following dis-
cretized expression

ZBO = lim
P !1

PY

s=1

NY

I =1

" �
M I P
2� �

� 3=2 Z
dR (s)

I

#

� exp
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(
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1
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� 2
+

1
P
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�
f R I g(s)

�
)#

(315)

for the path integral with ! 2
P = P=� 2 Thus, the contin uous parameter � 2 [0; � ] is

discretized using P so{called Trotter slicesor \time slices" s = 1; : : : ; P of \dura-
tion" � � = � =P. The paths

n
f R I g(s)

o
=

�
f R I g(1) ; : : : ; f R I g(P )

�

=
�

R (1)
1 ; : : : ; R (1)

N ; : : : ; R (P )
1 ; : : : ; R (P )

N

�
(316)

have to be closeddue to the trace condition, i.e. they are periodic in imaginary
time � which implies R I (0) � R I (� ) and thus R (P +1)

I = R (1)
I ; the internuclear

Coulomb repulsion V (R ) is now included in the de�nition of the total electronic
energyE0. Note that Eq. (315) is an exact reformulation of Eq. (314) in the limit
of an in�nitely �ne discretization P ! 1 of the paths.
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The e�ectiv e classicalpartition function Eq. (315) with a �xed discretization P
is isomorphic to that for N polymers each comprised by P monomers 233;126;120.
Each quantum degreeof freedom is found to be represented by a ring polymer or
necklace. The intrapolymeric interactions stem from the kinetic energy T( _R ) and
consist of harmonic nearest{neighbor couplings / ! P along the closedchain. The
interpolymeric interaction is given by the scaled potential E (s)

0 =P which is only
evaluated for con�gurations f R I g(s) at the sameimaginary time slice s.

In order to evaluate operators basedon an expressionlike Eq. (315) most nu-
merical path integral schemesutilize Metropolis Monte Carlo sampling with the
e�ectiv e potential

Ve� =
PX

s=1

(
NX

I =1

1
2

M I ! 2
P

�
R (s)

I � R (s+1)
I

� 2
+

1
P

E0

�
f R I g(s)

�
)

(317)

of the isomorphic classical system 233;126;542;120;124;646;407. Molecular dynam-
ics techniques were also proposed in order to sample con�guration space, see
Refs. 99;490;462;501;273 for pioneering work and Ref. 646 for an authoritativ e review.
Formally a Lagrangian can be obtained from the expressionEq. (317) by extending
it

L PIMD =
PX

s=1

(
NX

I =1

�
1

2M 0
I

P (s)
I �

1
2

M I ! 2
P

�
R (s)

I � R (s+1)
I

� 2
�

�
1
P

E0

�
f R I g(s)

�
)

(318)

with N � P �ctitious momenta P (s)
I and corresponding (unphysical) �ctitious masses

M 0
I . At this stagethe time dependenceof positions and momenta and thus the time

evolution in phasespace as generatedby Eq. (318) has no physical meaning. The
sole use of \time" is to parameterize the deterministic dynamical exploration of
con�gur ation space. The tra jectories of the positions in con�guration space,can,
however, be analyzed similar to the onesobtained from the stochastic dynamics
that underlies the Monte Carlo method.

The crucial ingredient in ab initio 395;399;644;404 as opposed to stan-
dard 233;126;542;120;124;646;407 path integral simulations consists in computing the
interactions E0 \on{the{y" like in ab initio moleculardynamics. In analogyto this
caseboth the Car{P arrinello and Born{Opp enheimer approaches from Sects.2.4
and 2.3, respectively, can be combined with any electronic structure method. The
�rst implementation 395 wasbasedon the Car{P arrinello / density functional com-
bination from Sect. 2.4 which leadsto the following extendedLagrangian

L AIPI =
1
P

PX
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X

i

�
D

_� (s)
i

�
�
� _� (s)

i
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I

� 2
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; (319)
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where the interaction energy E KS [f � i g(s) ; f R I g(s) ] at time slice s is de�ned in
Eq. (75); note that hereand in the following the dots denotederivativeswith respect
to propagation time t and that E KS

0 = min E KS . The standard Car{P arrinello
Lagrangian, seee.g. Eq. (41) or Eq. (58), is recovered in the limit P = 1 which
corresponds to classicalnuclei. Mixed classical / quantum systemscan easily be
treated by representing an arbitrary subsetof the nuclei in Eq. (319) with only one
time slice.

This simplest formulation of ab initio path integrals, however, is insu�cien t for
the following reason: ergodicit y of the tra jectories and adiabaticit y in the sense
of Car{P arrinello simulations are not guaranteed. It is known since the very �rst
molecular dynamics computer experiments that quasiharmonic systems (such as
coupled sti� harmonic oscillators subject to weak anharmonicities, i.e. the famous
Fermi{P asta{Ulam chains) can easily lead to nonergodic behavior in the sampling
of phasespace210. Similarly \micro canonical" path integral molecular dynamics
simulations might lead to an insu�cien t exploration of con�guration spacedepend-
ing on the parameters273. The severity of this nonergodicit y problem is governed
by the sti�ness of the harmonic intrachain coupling / ! P and the anharmonicity of
the overall potential surface/ E KS =P which establishesthe coupling of the modes.
For a better and better discretization P the harmonic energy term dominates ac-
cording to � P whereasthe mode{mixing coupling decreaseslike � 1=P. This
problem can be cured by attaching Nos�e{Hoover chain thermostats 388, seealso
Sect. 4.2, to all path integral degreesof freedom 637;644.

The secondissue is related to the separation of the power spectra associated
to nuclear and electronic subsystemsduring Car{P arrinello ab initio molecular dy-
namics which is instrumental for maintaining adiabaticit y, seeSect. 2.4. In ab
initio molecular dynamics with classicalnuclei the highest phonon or vibrational
frequency! max

n is dictated by the physicsof the system,seee.g. Fig. 2. This means
in particular that an upper limit is given by sti� intramolecular vibrations which
do not exceed! max

n � 5000 cm� 1 or 150 THz. In ab initio path integral simula-
tions, on the contrary, ! max

n is given by ! P which actually divergeswith increasing
discretization as �

p
P. The simplest counteraction would be to compensatethis

artifact by decreasingthe �ctitious electron mass � until the power spectra are
again separatedfor a �xed value of P and thus ! P . This, however, would lead to
a prohibitiv ely small time step because� tmax /

p
� . This dilemma can be solved

by thermostatting the electronic degreesof freedomas well 395;399;644, seeSect.4.2
for a related discussionin the context of metals.

Finally , it is known that diagonalizing the harmonic spring interaction in
Eq. (319) leads to more e�cien t propagators 637;644. One of these transforma-
tion and the resulting Nos�e{Hoover chain thermostatted equations of motion will
be outlined in the following section, seein particular Eqs. (331){(337). In addi-
tion to keeping the averagetemperature �xed it is also possibleto generatepath
tra jectories in the isobaric{isothermal N pT ensemble 646;392. Instead of using
Car{P arrinello �ctitious dynamics in order to evaluate the interaction energy in
Eq. (318), which is implemented in the CPMDpackage 142, it is evident that also
the Born{Opp enheimerapproach from Sect. 2.3 or the free energy functional from
Sect.4.3 canbe used. This route eliminates the adiabaticit y problem and wastaken
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up e.g. in Refs. 132;37;596;597;428;429;333.
A �nal observation concerningparallel supercomputersmight be useful,seealso

Sect. 3.9. It is evident from the Lagrangian Eq. (319) and the resulting equations
of motion (e.g. Eqs. (331){(337)) that most of the numerical workload comesfrom
calculating the ab initio forces on the nuclei. Given a �xed path con�guration
Eq. (316) the P underlying electronic structure problems are independent from
each other and can be solved without communication on P nodesof a distributed
memory machine. Communication is only necessaryto sendthe �nal result, essen-
tially the forces,to a special node that computesthe quantum kinetic contribution
to the energy and integrates �nally the equations of motions. It is even conceiv-
able to distribute this task on di�eren t supercomputers, i.e. \meta{computing" is
within reach for such calculations. Thus, the algorithm is \embarrassinglyparallel"
provided that the memory per node is su�cien t to solve the completeKohn{Sham
problem at a given time slice. If this is not the casethe electronic structure cal-
culation itself has to be parallelized on another hierarchical level as outlined in
Sect. 3.9.

4.4.3 Ab Initio Path Centroids: Dynamics

Initially the moleculardynamicsapproach to path integral simulations wasinvented
merely asa trick in order to samplecon�guration spacesimilar to the Monte Carlo
method. This perception changed recently with the introduction of the so{called
\centroid molecular dynamics" technique 102, seeRefs. 103;104;105;665;505;506;507 for
background information. In a nutshell it is found that the time evolution of the
centers of massor centroids

R c
I (t) =

1
P

PX

s0=1

R (s0)
I (t) (320)

of the closed Feynman paths that represent the quantum nuclei contains quasi-
classical information about the true quantum dynamics. The centroid molecular
dynamics approach can be shown to be exact for harmonic potentials and to have
the correct classicallimit. The path centroids move in an e�ectiv e potential which
is generatedby all the other modes of the paths at the given temperature. This
e�ectiv e potential thus includes the e�ects of quantum uctuations on the (qua-
siclassical) time evolution of the centroid degreesof freedom. Roughly speaking
the tra jectory of the path centroids can be regardedas a classicaltra jectory of the
system,which is approximately \renormalized" due to quantum e�ects.

The original centroid molecular dynamics technique 102;103;104;105;665 relies on
the useof model potentials as the standard time{indep endent path integral simu-
lations. This limitation was overcomeindependently in Refs. 469;411 by combining
ab initio path integralswith centroid molecular dynamics. The resulting technique,
ab initio centroid molecular dynamics can be consideredas a quasiclassicalgener-
alization of standard ab initio molecular dynamics. At the sametime, it preserves
the virtues of the ab initio path integral technique 395;399;644;404 to generateexact
time{indep endent quantum equilibrium averages.
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Here, the so{called adiabatic formulation 105;390;106 of ab initio centroid molecu-
lar dynamics 411 is discussed.In closeanalogyto ab initio molecular dynamicswith
classicalnuclei also the e�ectiv e centroid potential is generated\on{the{y" as the
centroids are propagated. This is achieved by singling out the centroid coordinates
in terms of a normal mode transformation 138 and accelerating the dynamics of
all non{centroid modes arti�cially by assigningappropriate �ctitious masses. At
the sametime, the �ctitious electron dynamics �a la Car{P arrinello is kept in order
to calculate e�cien tly the ab initio forceson all modes from the electronic struc-
ture. This makes it necessaryto maintain two levels of adiabaticit y in the course
of simulations, seeSect. 2.1 of Ref. 411 for a theoretical analysisof that issue.

The partition function Eq. (315), formulated in the so-called\primitiv e" path
variables f R I g(s) , is �rst transformed 644;646 to a representation in terms of the
normal modesf u I g(s) , which diagonalizethe harmonic nearest{neighbor harmonic
coupling 138. The transformation follows from the Fourier expansion of a cyclic
path

R (s)
I =

PX

s0=1

a(s0)
I exp[2� i (s � 1)(s0 � 1)=P] ; (321)

where the coe�cien ts f aI g(s) are complex. The normal mode variables f u I g(s) are
then given in terms of the expansioncoe�cien ts according to

u (1)
I = a(1)

I

u (P )
I = a(( P +2) =2)

I

u (2s� 2)
I = Re (a(s)

I )

u (2s� 1)
I = Im (a(s)

I ) : (322)

Associated with the normal modetransformation is a setof normal modefrequencies
f � g(s) given by

� (2s� 1) = � (2s� 2) = 2P
�
1 � cos

�
2� (s � 1)

P

� �
(323)

with � (1) = 0 and � (P ) = 4P. Equation (321) is equivalent to direct diagonalization
of the matrix

A ss0 = 2� ss0 � � s;s 0� 1 � � s;s 0+1 (324)

with the path periodicit y condition A s0 = A sP and A s;P +1 = A s1 and subsequent
use of the unitary transformation matrix U to transform from the \primitiv e"
variables f R I g(s) to the normal mode variables f u I g(s)

R (s)
I =

p
P

PX

s0=1

U y
ss0u

(s0)
I

u (s)
I =

1
p

P

PX

s0=1

U ss0R (s0)
I : (325)
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The eigenvaluesof A when multiplied by P are preciselythe normal mode frequen-
cies f � g(s) . Sincethe transformation is unitary , its Jacobian is unit y. Finally , it is
convenient to de�ne a set of normal mode masses

M (s)
I = � (s)M I (326)

that vary along the imaginary time axis s = 1; : : : ; P , where � (1) = 0 for the
centroid mode u (1)

I .
Basedon these transformations the Lagrangian corresponding to the ab initio

path integral expressedin normal modes is obtained 644
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; (327)

where the massesM 0(s)
I will be de�ned later, seeEq. (338). As indicated, the

electronic energy E (s) is always evaluated in practice in terms of the \primitiv e"
path variables f R I g(s) in Cartesian space.The necessarytransformation to switch
forth and back between\primitiv e" and normal mode variables is easily performed
as given by the relations Eq. (325).

The chief advantageof the normal moderepresentation Eq. (325) for the present
purposeis that the lowest{order normal mode u (1)

I

u (1)
I = R c

I =
1
P

PX

s0=1

R (s0)
I (328)

turns out to be identical to the centroid R c
I of the path that represents the I th

nucleus. The centroid force can also be obtained from the matrix U according
to 644

@E

@u (1)
I

=
1
P

PX

s0=1

@E (s0)

@R (s0)
I

(329)

sinceU 1s = U y
s1 = 1=

p
P and the remaining normal mode forcesare given by

@E

@u (s)
I

=
1

p
P

PX

s0=1

U ss0
@E (s0)

@R (s0)
I

for s = 2; : : : ; P (330)

in terms of the \primitiv e" forces � @E (s) =@R (s)
I . Here, E on the left{hand{side

with no superscript (s) refersto the averageelectronicenergyE = (1=P)
P P

s=1 E (s)

from which the forceshave to be derived. Thus, the force Eq. (329) acting on each
centroid variable u (1)

I , I = 1; : : :N , is exactly the force averagedover imaginary
time s = 1; : : : ; P , i.e. the centroid force on the I th nucleus as already given in
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Eq. (2.21) of Ref. 644. This is the desiredrelation which allowsin centroid molecular
dynamics the centroid forcesto be simply obtained as the averageforce which acts
on the lowest-ordernormal mode Eq. (328). The non{centroid normal modesu (s)

I ,
s = 2; 3; : : : ; P of the paths establish the e�ectiv e potential in which the centroid
moves.

At this stagethe equationsof motion for adiabatic ab initio centroid molecular
dynamics 411 can be obtained from the Euler{Lagrange equations. Theseequations
of motion read

M 0(1)
I •u (1)

I = �
1
P

PX

s=1

@E
�
f � i g(s) ; f R I g(s)

�

@R (s)
I

(331)
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where u(s)
I ;� denotes the Cartesian components of a given normal mode vector

u (s)
I = (u(s)

I ;1; u(s)
I ;2; u(s)
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thermostats 388 of length K are coupled to all non{centroid mode degreesof free-
dom s = 2; : : : ; P

Qn •� (s)
I ;�; 1 =

�
M 0(s)

I

�
_u(s)

I ;�

� 2
� kB T

�
� Qn _� (s)

I ;�; 1
_� (s)
I ;�; 2 (334)

Qn •� (s)
I ;�;k =

�
Qn

�
_� (s)
I ;�;k � 1

� 2
� kB T

�
� Qn _� (s)

I ;�;k
_� (s)
I ;�;k +1 (1 � � k K ) ; k = 2; :::; K(335)

and all orbitals at a given imaginary time slice s are thermostatted by one such
thermostat chain of length L
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note that for standard ab initio path integral runs as discussedin the previous
section the centroid mode should be thermostatted as well. The desired �ctitious
kinetic energyof the electronic subsystemT 0

e can be determined basedon a short
equivalent classical Car{P arrinello run with P = 1 and using again the relation
1=� e = 2T0

e =6N 0
e where N 0

e is the number of orbitals. The massparameters f Qe
l g

associated to the orbital thermostats are the sameas those de�ned in Eq. (271),
whereasthe singlemassparameter Qn for the nuclei is determined by the harmonic
interaction and is given by Qn = kB T=! 2

P = � =P. The characteristic thermostat
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frequency of the electronic degreesof freedom ! e should again lie above the fre-
quencyspectrum associated to the �ctitious nucleardynamics. Theseis the method
that is implemented in the CPMDpackage 142.

An important issue for adiabatic ab initio centroid molecular dynamics 411 is
how to establish the time{scale separationof the non{centroid modescomparedto
the centroid modes. This is guaranteed if the �ctitious normal mode massesM 0(s)

I
are taken to be

M 0(1)
I = M I

M 0(s)
I =  M (s)

I ; s = 2; : : : ; P ; (338)

whereM I is the physical nuclear mass,M (s)
I are the normal modemassesEq. (326),

and  is the \centroid adiabaticit y parameter"; note that this corrects a misprint
of the de�nition of M 0(s)

I for s � 2 in Ref. 411. By choosing 0 <  � 1, the
required time{scale separationbetweenthe centroid and non{centroid modescanbe
controlled so that the motion of the non{centroid modes is arti�cially accelerated,
seeSect. 3 in Ref. 411 for a systematic study of the  {dependence. Thus, the
centroids with associated physical massesmove quasiclassicallyin real{time in the
centroid e�ectiv e potential, whereasthe fast dynamics of all other nuclear modes
s > 1 is �ctitious and serves only to generatethe centroid e�ectiv e potential \on{
the{y". In this sense (or rather  M I ) is similar to � , the electronic adiabaticit y
parameter in Car{P arrinello molecular dynamics.

4.4.4 Other Approaches

It is evident from the outset that the Born{Opp enheimer approach to generate
the ab initio forces can be used as well as Car{P arrinello molecular dynamics
in order to generate the ab initio forces on the quantum nuclei. This varia-
tion was utilized in a variety of investigations ranging from clusters to molecular
solids132;37;596;597;428;429;333. Closely related to the ab initio path integral approach
as discussedhere is a method that is basedon Monte Carlo sampling of the path
integral 672. It is similar in spirit and in its implementation to Born{Opp enheimer
molecular dynamics sampling as long as only time{a veragedstatic observablesare
calculated. A semiempirical(\ cndo " and \ indo ") versionof Born{Opp enheimerab
initio path integral simulations wasalsodevised656 and applied to study muonated
organic molecules656;657.

A non{self{consistent approach to ab initio path integral calculations wasadvo-
cated and usedin a seriesof publications devoted to study the interplay of nuclear
quantum e�ects and electronic structure in unsaturated hydrocarbons like ben-
zene 544;503;81;543;504. According to this philosophy, an ensemble of nuclear path
con�gurations Eq. (316) is �rst generatedat �nite temperature with the aid of a
parameterizedmodel potential (or using a tight{binding Hamiltonian 504). In a sec-
ond, independent step electronic structure calculations (using Pariser{Parr{P ople,
Hubbard, or Hartree{Fock Hamiltonians) are performed for this �xed ensemble of
discretized quantum paths. The crucial di�erence comparedto the self{consistent
approaches presented above is that the creation of the thermal ensemble and the

117



subsequent analysisof its electronic properties is performed using di�eren t Hamil-
tonians.

Several attempts to treat also the electrons in the path integral formulation {
instead of using wavefunctions as in the ab initio path integral family { were
published 606;119;488;449;450. These approaches are exact in principle, i.e. non{
adiabaticit y and full electron{phonon coupling is included at �nite temperatures.
However, they su�er from severe stabilit y problems 121 in the limit of degenerate
electrons,i.e. at very low temperatures comparedto the Fermi temperature, which
is the temperature rangeof interest for typical problemsin chemistry and materials
science.Recent progresson computing electronic forcesfrom path integral Monte
Carlo simulations was also achieved 708.

More traditional approaches use a wavefunction representation for both the
electrons in the ground state and for nuclear density matrix instead of path in-
tegrals. The advantage is that real{time evolution is obtained more naturally
compared to path integral simulations. A review of such methods with the em-
phasis of computing the interactions \on{the{y" is provided in Ref. 158. An ap-
proximate wavefunction{based quantum dynamics method which includes several
excited statesand their couplingswasalsodevisedand used385;386;387;45. An alter-
native approach to approximate quantum dynamics consistsin performing instan-
ton or semiclassicalab initio dynamics 325;47. Also the approximate vibrational
self{consistent �eld approach to nuclear quantum dynamics was combined with
\on{the{y" MP2 electronic structure calculations 122.

5 Applications: From Materials Science to Bio chemistry

5.1 Intr oduction

Ab initio molecular dynamicswascalled a \virtual matter laboratory" 234, a notion
that is fully justi�ed in view of its relationship to experiments performed in the
real laboratory. Ideally, a systemis prepared in someinitial state and than evolves
according to the basic laws of physics { without the need of experimental input.
It is clear to every practitioner that this viewpoint is highly idealistic for more
than one reason,but still this philosophy allows one to compute observables with
predictive power and also implies a broad range of applicabilit y.

It is evident from the number of papers dealing with ab initio molecular dy-
namics, seefor instance Fig. 1, that a truly comprehensive survey of applications
cannot be given. Instead, the strategy chosenis to provide the readerwith a wealth
of referencesthat try cover the full scope of this approach { instead of discussing
in depth the physics or chemistry of only a few speci�c applications. To this end
the selection is basedon a general literature search in order to suppresspersonal
preferencesas much as possible. In addition the emphasislies on recent applica-
tions that could not be covered in earlier reviews. This implies that several older
key referencepapers on similar topics are in generalmissing.
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5.2 Solids, Polymers, and Materials

The �rst application of Car{P arrinello molecular dynamics 108 dealt with silicon,
one of the basic materials in semiconductor industry. Classic solid{state applica-
tion of this technique focus on the properties of crystals, such as those of CuCl
where anharmonicity and o�{cen ter displacements of the Cu along the (111) di-
rections were found to be important to describe the crystal structure as a func-
tion of temperature and pressure64. Various properties of solid nitromethane 647,
crystalline nitric acid trih ydrate 602, solid benzene420, stage{1 alkali{graphite in-
tercalation compounds 286;287, and of the one-dimensionalintercalation compound
2HgS� SnBr2 530 weredeterminedbasedon �rst principles. The molecularsolid HBr
undergoesvarious phasetransitions upon compression.The dynamical behavior of
one of thesephases,disorderedHBr{I, could be clari�ed using ab initio molecular
dynamics 313. Structure, phasetransitions and short{time dynamicsof magnesium
silicate perovskites were analyzed in terms of ab initio tra jectories 670. The A7 to
simplecubic transformation in As wasinvestigatedusingabinitio moleculardynam-
ics at constant{pressure568 . By applying external pressurethe hydrogen sublattice
was found to undergo amorphization in Mg(OH) 2 and Ca(OH)2 a phenomenon
that was interpreted in terms of frustration 511. Properties of solid cubane C8H8

were obtained in constant pressuresimulations and compared to experiment 514.
Ab initio simulations of the graphitization of at and stepped diamond (111) sur-
facesuncovered that the transition temperature depends sensibly on the type of
the surface327.

Sliding of grain boundariesin aluminum asa typical ductile metal wasgenerated
and analyzed in terms of atomistic rearrangements 432. Microfracture in a sample
of amorphoussilicon carbide was induced by uniaxial strain and found to induce Si
segregationat the surface 226. The early stagesof nitride growth on cubic silicon
carbide including wetting were modeled by depositing nitrogen atoms on the Si{
terminated SiC(001) surface225.

Classicalproton di�usion in crystalline silicon at high temperatureswasan early
application to the dynamics of atoms in solids 93. Using the ab initio path integral
technique 395;399;644;404, seeSect. 4.4 the preferred sites of hydrogen and muonium
impurities in crystalline silicon 428;429, or the proton positions in HCl � nH2O crys-
talline hydrates 516 could be located. The radiation{induced formation of H?

2 defects
in c{Si via vacanciesand self{interstitials was simulated by ab initio molecular dy-
namics 178. The classicaldi�usion of hydrogen in crystalline GaAs was followed in
terms of di�usion paths 668 and photoassistedreactivation of H{passivated Si donors
in GaAs was simulated basedon �rst principles 430. Oxygen di�usion in p{doped
silicon can be enhancedby adding hydrogen to the material, an e�ect that could
be rationalized by simulations 107. Ab initio dynamics helped in quantifying the
barrier for the di�usion of atomic oxygenin a model silica host 279. The microscopic
mechanism of the proton di�usion in protonic conductors, in particular Sc{doped
SrTiO3 and Y{dop ed SrCeO3 , is studied via ab initio molecular dynamics, where
is it found that covalent OH{b onds are formed during the process561. Ionic dif-
fusion in a ternary superionic conductor was obtained by ab initio dynamics 677.
Proton motion and isomerization pathways of a complex photochromic molecular
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crystal composedof 2{(2,4{dinitrob enzyl)pyridine dyeswas generatedby ab initio
methods 216.

Also materials properties of polymers are investigated in quite some detail.
Early applications of semiempirical zdo molecular dynamics 666 were devoted to
defectsin conducting polymers, in particular to solitons, polaronsand alkali doping
in polyacetylene666;667 aswell asto muonium implanted in transand cis polyacety-
lene 200. More recent are calculations of Young's modulus for crystalline polyethy-
lene 271, soliton dynamics in positively charged polyacetylene chains 125, charge
localization in doped polypyrroles 140, chain rupture of polyethylene chains under
tensile load 533, the inuence of a knot on the strength of a polymer strand 534, or
ion di�usion in polyethylene oxide 456.

5.3 Surfaces, Interfaces, and Adsorbates

A host of studies focusing on atoms and in particular on molecules interacting
with surfacesappeared over the years. Recent studies focussedfor instance on
C2H2, C2H4, and trimeth ylgallium adsorbateson the GaAs(001){(2� 4) surface248,
thiophene on the catalytically active MoS2(010) 512 or RuS2

580 surfaces,small
moleculeson a nitric acid monohydrate crystal surface624, CO on Si(001) 314, small
moleculeson TiO 2

554;41, sulfur on Si(100) at various coverages707, and sulfuric
acid adsorbed on ZrO2(101) and ZrO2(001) 269.

Speci�c to ab initio molecular dynamics is its capability to describe also
chemisorption aswell asdynamical processeson (and of) surfacesincluding surface
reactions 500. The ab initio calculations of surfacephonons in semiconductorsur-
facescan be basedon the frozen{phonon, linear{responseor nowadays molecular
dynamics approaches, seeRef. 218 for a discussionand comparison. A review on
the structure and energeticsof oxide surfacesincluding molecular processesoccur-
ring on such surfacesis provided in Ref. 235, whereasRef. 256 concentrates on the
interaction of hydrogen with cleanand adsorbatecoveredmetal and semiconductor
surfaces.

Recent applications in surfacescienceinclude the transition from surfacevibra-
tions to liquid{lik edi�usional dynamicsof the Ge(111)surface607, the di�usion of Si
adatomson a double{layer stepped Si(001)surface330, the structure of chemisorbed
acetylene on the Si(001){(2� 1) surface 423, chemisorption of quinizarin on � {
Al 2O3

212;213, the di�usion of a single Ga adatom on the GaAs(100){c(4� 4) sur-
face367, homoepitaxial crystal growth on Si(001) and the low{temp erature dynam-
ics of Si(111){(7� 7) 595;611, dissociation of an H2O moleculeon MgO 358;359, disso-
ciation of Cl2 on GaAs(110) 380, chlorine adsorption and reactions on Si(100) 691,
molecular motion of NH3 on MgO 358, dynamics and reactions of hydrated � {
alumina surfaces 289, molecular vs. dissociative adsorption of water layers on
MgO(100) as a function of coverage 448, oxidation of CO on Pt(111) 8;705, the
reaction HCl + HOCl ! H2O + Cl2 as it occurs on an ice surface 373, or desorp-
tion of D2 from Si(100) 255. Thermal contraction, the formation of adatom-vacancy
pairs, and �nally premelting was observed in ab initio simulations of the Al(110)
surfaceat temperaturesup to 900K 415 Early stagesof the oxidation of a Mg(0001)
surface by direct attack of molecular O2 was dynamically simulated 96 including
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the penetration of the oxidation layer into the bulk. Similarly , the growth of an
oxide layer was generatedon an Si(100) surface653.

The water{Pd(100), water{O/Pd(100) and water{Si(111) interfacesweresimu-
lated basedon ab initio molecular dynamics 336;655. Water covering the surfaceof
a microscopicmodel of muscovite mica is found to form a two{dimensional network
of hydrogen bonds, called two{dimensional ice, on that surface 447. The metal{
organic junction of monolayersof Pd{p orphyrin and peryleneon Au(111) wasana-
lyzed using an ab initio approach 355. An interesting possibility is to compute the
tip{surface interactions in atomic forcemicroscopy ase.g. donefor a neutral silicon
tip interacting with an InP(110) surface619 or Si(111) 481;482.

5.4 Liquids and Solutions

Molecular liquids certainly belongto the classicrealm of molecular dynamicssimu-
lations. Water was and still is a challenge581 for both experiment and simulations
due to the directional nature and the weaknessof the hydrogen bonds which leads
to delicate association phenomena. Pioneering ab initio simulations of pure wa-
ter at ambient 352 and supercritical conditions 205 were reported only a few years
ago. More recently , thesegradient{corrected density functional theory{based simu-
lations wereextendedinto several directions 587;573;575;576;579;118. In the meantime
(minimal{basis) Hartree{Fock ab initio molecular dynamics 291 aswell asmore ap-
proximate schemes455 were also applied to liquid water. Sincechemical reactions
often occur in aqueousmedia the solvation properties of water are of utmost impor-
tance so that the hydration of ions 403;620;621;377;502 and small molecules353;354;433

wasinvestigated. Similarly to water liquid HF is a strongly associated liquid which
features short{liv ed hydrogen{bonded zig{zag chains 521. Another associated liq-
uid, methanol, wassimulated at 300K using an adaptive �nite{elemen t method 634

in conjunction with Born{Opp enheimermoleculardynamics 635. In agreement with
experimental evidence,the majorit y of the moleculesis found to be engagedin short
linear hydrogen{bondedchains with somebranching points 635. Partial reviewson
the subject of ab initio simulations as applied to hydrogen{bonded liquids can be
found in the literature 586;406;247.

The ab initio simulated solvation behavior of \un bound electrons" in liquid
ammonia at 260 K was found to be consistent with the physical picture extracted
from experiment 155;156. Similarly , ab initio moleculardynamicsof dilute 553;203 and
concentrated 569 molten K x �(KCl) 1� x mixtures wereperformed at 1300K entering
the metallic regime. The structure of liquid ammonia at 273 K was investigated
with a variety of techniquessothat limitations of using classicalnuclei, simplepoint
chargemodels,small systems,and variousdensity functionals could be assessed164.

Ab initio molecular dynamics is alsoan ideal tool to study other complex uids
with partial covalency, metallic uids, and their transformations as a function of
temperature, pressure,or concentration. The properties of water{free KF � nHF
melts depend crucially on polyuoride anions Hm F�

m +1 and solvated K+ cations.
Ab initio simulations allow for a direct comparisonof thesecomplexesin the liquid,
gaseousand crystalline phase 515. The changesof the measuredstructure factor
of liquid sulfur as a function of temperature can be rationalized on the atomistic
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level by various chain and ring structures that can be statistically analyzed in ab
initio molecular dynamics simulations 631. Liquid GeSe2 is characterizedby strong
chemical bonds that imposea structure beyond the usual very short distancesdue
to network formation 416. Zintl{allo yssuch as liquid NaSn 552 or KPb 556 have very
interesting bonding properties that manifest themselvesin strong temperature{ and
concentration dependencesof their structure factors (including the appearanceof
the so{called �rst sharp di�raction peak 555) or electric conductivities.

Metals are ideal systemsto investigate the metal{insulator transition upon ex-
pansion of the liquid 346;63 or melting 689. Liquid copper was simulated at 1500K:
structural and dynamical data werefound to be in excellent agreement with exper-
imental 464. Transport coe�cien ts of liquid metals (including in particular extreme
conditions) can alsobe obtained from �rst principles molecular dynamicsusing the
Green{Kubo formalism 571;592. The microscopicmechanism of the semiconductor{
metal transition in liquid As2Se3 could be rationalized in terms of a structural
change as found in ab initio simulations performed as a function of temperature
and pressure563. The i i i{v semiconductors,such as GaAs, assumemetallic behav-
ior when melted, whereasthe i i{vi semiconductor CdTe does not. The di�eren t
conductivities could be traced back to pronouncedstructural dissimilarities of the
two systemsin the melt 236.

5.5 Glassesand AmorphousSystems

Related to the simulation of dynamically disordered uid systemsare investiga-
tions of amorphousor glassymaterials. In view of the severe limitations on system
sizeand time scale(and thus on correlation lengths and times) ab initio molecular
dynamicscanonly provide fairly local information in this sense.Within theseinher-
ent constraints the microscopicstructure of amorphousselenium304 and tetrahedral
amorphouscarbon 384, the amorphization of silica 684, boron doping in amorphous
Si:H 181 or in tetrahedral amorphouscarbon 227, aswell asthe Raman spectrum 465

and dynamic structure factor 466 of quartz glassand their relation to short{range
order could be studied.

The properties of supercooled CdTe were compared to the behavior in the liq-
uid state in terms of its local structure 237. Defects in amorphousSi1� x Gex alloys
generatedby ab initio annealing were found to explain ESR spectra of this sys-
tem 329. The infrared spectrum of a sample of amorphous silicon was obtained
and found to be in quantitativ e agreement with experimental data 152. The CO2

insertion into a model of argon{bombarded porousSiO2 wasstudied 508. In partic-
ular the electronic properties of amorphousGaN were investigated using ab initio
methods 601.

Larger systemsand longer annealingtimes are accessibleafter introducing more
approximations into the �rst principle treatment of the electronic structure that
underliesab initio molecular dynamics. Using such methods 551, a host of di�eren t
amorphouscarbon nitride sampleswith various stoichiometries and densitiescould
be generated and characterized in terms of trends 675. Similarly , the pressure{
inducedglass{to{crystal transition in condensedsodium wasinvestigated22 and two
structural modelsof amorphousGaN obtained at di�eren t densitieswereexamined
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in terms of their electronic structure 601.

5.6 Matter at Extreme Conditions

A strong advantage of ab initio simulations is their predictive power also at ex-
treme conditions, an area where molecular dynamics relying on �tted potential
modelsmight encounter severedi�culties. Thus, high pressuresand / or high tem-
peratures such as those in the earth's core, on other planets, or on stars can be
easily achieved in the virtual laboratory. This opens up the possibility to study
phasetransformations and chemical reactions at such conditions 56. Furthermore,
conditions of geophysical and astrophysical interest can nowadays be produced in
the real laboratory, using techniques basedon diamond anvil cells, shock waves,or
lasers. The limitations of theseexperimental approachesare, however, not so much
related to generating the extreme conditions as one might expect, but rather to
measuringobservables.

In the virtual laboratory this information is accessibleand the melting of
diamond at high pressure 222, the phase transformation from the antiferromag-
netic insulating � {O 2 phaseto a nonmagnetic metallic molecular � {O 2 phase557,
the phase diagram of carbon at high pressuresand temperatures 261 as well as
transformations of methane 13, carbon monoxide 54 , molecular CO2

267;558, water
ice 363;364;58;50;51;52, solid 305;337;65;66;333 and hot uid 5 hydrogen,solid Ar(H 2)2

53

under pressurecould be probed. Along similar lines properties of a liquid Fe{S mix-
ture under earth's core conditions 11, the viscosity of liquid iron 690;592, the sound
velocity of densehydrogen at conditions on jupiter 6, the phasediagram of water
and ammonia up to 7000 K and 300 GPa 118, the laser heating of silicon 570;572

and graphite 574 etc. were investigated at extreme state points. A review on ab
initio simulations relevant to minerals at conditions found in the earth's mantle is
provided in Ref. 683.

5.7 Clusters, Fullerenes,and Nanotubes

Investigations of clusters by ab initio molecular dynamics were among the �rst
applications of this technique. Here, the feasibility to conduct �nite{temp erature
simulations and in particular the possibility to search globally for minima turned
out to be instrumental 302;31;303;550;517;519, see e.g. Refs. 16;321;32 for reviews.
Such investigations focus more and more on clusters with varying composi-
tion 518;293;199;348;349;161. Cluster melting is also accessibleon an ab initio foot-
ing 84;531;525;526 and molecularclusters,complexesor cluster aggregatesareactively
investigated 612;645;613;70;596;597;133;701;524.

Ii i{v semiconductorclusters embeddedin sodalite show quantum con�nement
and sizee�ects that can be rationalized by ab initio simulations 625;95. Supported
clusters such as Cun on an MgO(100) surfaceare found to di�use by \rolling" and
\t wisting" motions with very small barriers 438. The di�usion of protonated helium
clustersin varioussodalite cageswasgeneratedusingab initio dynamics 198. Photo{
induced structural changes in Se chains and rings were generated by a vertical
homo ! lumo excitation and monitored by ab initio dynamics 306. With the
discovery and production of �nite carbon assemblies ab initio investigationsof the
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properties of fullerenes 19;17;451, the growth processof nanotubes 127;62;72, or the
electrical conductivit y of nanowires 38;272 becameof great interest.

5.8 Complexand Floppy Molecules

The determination of the structure of a RNA duplex including its hydration wa-
ter 311, investigations of geometry and electronic structure of porphyrins and por-
phyrazines 356, and the simulation of a bacteriochlorophyll crystal 381 are some
applications to large molecules. Similarly , the \carb oplatin" complex 623{ a drug
with large ligands { as well as the organometallic complex Alq(3) 148 { an electro-
luminescent material usedin organic light{emitting diodes{ wereinvestigatedwith
respect to structural, dynamical and electronic properties.

The organometallic compound C2H2Li 2 has an unexpected ground{state struc-
ture that was found by careful ab initio simulated annealing 521. In addition, this
complex shows at high temperatures intramolecular hydrogen migration that is
mediated via a lithium hydride unit 521. Ground{state uxionalit y of protonated
methane CH+

5
397;408 including someisotopomers 409 and of protonated acetylene

C2H+
3

400 was shown to be driven by quantum e�ects. The related dynamical
exchange of atoms in these molecules can also be excited by thermal uctua-
tions 630;85;401. In addition it was shown that CH+

5 is three{center two{electron
bonded and that this bonding topology doesnot qualitativ ely change in the pres-
enceof strong quantum motion 402. The uxional behavior of the protonated ethane
molecular ion C2H+

7 was investigatedby ab initio molecular dynamics as well 172.
The neutral and ionized SiH5 and Si2H3 speciesdisplay a rich dynamical be-

havior which was seenduring ab initio molecular dynamics simulations 246. The
lithium pentamer Li 5 was found to perform pseudorotational motion on a time
scaleof picosecondsor faster at temperatures as low as 77 K 231. Using ab initio
instanton dynamics the inversion splitting of the NH3, ND3, and PH3 molecules
due to the umbrella mode was estimated 325. Similarly , a semiclassicalab initio
dynamics approach as used to compute the tunneling rate for intramolecular pro-
ton transfer in malonaldehyde 47. Ab initio simulated annealing can be used to
explore the potential energy landscape and to locate various minima, such as for
instancedonefor protonated water clusters 673. Molecular dynamicssimulations of
the trimeth ylalumin um Al(CH 3)3 have beencarried out in order to investigate the
properties of the gas{phasedimer 29. The structures and vibrational frequencies
of tetrathiafulv alene in di�eren t oxidation states was probed by ab initio molec-
ular dynamics 324. Implanted muons in organic molecules(benzene,3{quinolyl
nitronyl nitroxide, para{pyridyl nitronyl nitroxide, phenyl nitronyl nitroxide and
para{nitrophenyl nitronyl nitroxide) were investigated using approximate ab ini-
tio path integral simulations that include the strong quantum broadening of the
muonium 656;657.

5.9 Chemical Reactions and Transformations

Early applications of ab initio molecular dynamics were devoted to reactive scat-
tering in the gas phasesuch as CH2 + H2 ! CH4

669 or H� + CH4 ! CH4 +
H� 365. The \on{the{y" approach can be compared to classical tra jectory cal-
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culations on very accurate global potential energy surfaces. This was for instance
done for the well{studied exothermic exchange reaction F + H2 ! HF + H in
Ref. 565. Other gasphasereactionsstudied wereLi(2p) + H2 ! LiH( 1�) + H(1S)
in Ref. 387, F + C2H4 ! C2H3F + H in Ref. 83, 2O3 ! 3O2 in Ref. 170, F� +
CH3Cl ! CH3F + Cl � in Ref. 605, hydroxyl radical with nitrogen dioxide radi-
cal 165, formaldehyde radical anion with CH3Cl in Ref. 700, the reduction of OH�

with 3-hexanone215 or the hydrolysis (or solvolysis, SN 2 nucleophilic substitution)
of methyl chloride with water 2;3. Photoreactions of moleculesslowly becomeac-
cessibleto ab initio dynamics, such asfor instancethe cis{ transphotoisomerization
in ethylene 46, excited{state dynamics in conjugated polymers 71, bond breaking
in the S8 ring 562, transformations of diradicales 195;196, or the S0 ! S1 photo
isomerization of formaldimine 214.

In addition to allowing to study complexgasphasechemistry, ab initio molecular
dynamics opened the way to simulate reactions in solution at �nite temperatures.
This allows liquid state chemistry to take place in the virtual laboratory where
thermal uctuations and solvation e�ects are included. Someapplications out of
this emerging �eld are the cationic polymerization of 1,2,5{trio xane 146;147, the
initial steps of the dissociation of HCl in water 353;354, the formation of sulfuric
acid by letting SO3 react in liquid water 421 or the acid{catalyzed addition of water
to formaldehyde 422.

Proton transfer is a processof broad interest and implications in many �elds.
Intramolecular proton transfer wasstudied recently in malonaldehyde 695;47, a Man-
nich base182, and formic acid dimers 427. Pioneering ab initio molecular dynamics
simulations of proton and hydroxyl di�usion in liquid water were reported in the
mid nineties 640;641;642. Related to this problem is the auto{dissociation of pure
water at ambient conditions 628;629. Since recently it becamepossible to study
proton motion including nuclear quantum e�ects 645;410;412 by using the ab initio
path integral technique 395;399;644;404, seeSect. 4.4.

Ab initio moleculardynamicsalsoallowschemicalreactionsto takeplacein solid
phases,in particular if a constant pressuremethodology is used 56, seeSect. 4.2.
For instance solid state reactions such as pressure{induced transformations of
methane13 and carbon monoxide 54 or the polymerization 57 and amorphization 56

of acetylene were investigated.

5.10 Catalysis and Zeolites

The polymerization of ole�nes is an important classof chemical reactions that is
operated on the industrial scale. In the light of such applications the detailed un-
derstanding of these reactions might lead to the designof novel catalysts. Driv en
by such stimulations several catalysts were investigated in detail such as metal
alkyles 609, platin um{phospine complexes 141, or Grubbs' ruthenium{phosphine
complexes1, metallocenes696. In addition, elementary steps of various chemi-
cal processeswere the focus of ab initio molecular dynamics simulations. Among
those are chain branching and termination steps in polymerizations 696, ethylene
metathesis 1, \living polymerization" of isoprenewith ethyl lithium 522, Ziegler{
Natta heterogenouspolymerization of ethylene 79;80, Reppe carbonylation of Ni{
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CH=CH 2 using Cl(CO) 2
20, or Sakakura{T anaka functionalization 382. As in the

real laboratory, side reactions can occur also in the virtual laboratory, such as e.g.
the � {h ydrogen elimination as an unpredicted reaction path 383. A digressionon
using �nite{temp erature ab initio dynamics in homogeneouscatalysis research can
be found in Ref. 697.

Zeolites often serve as catalysists as well and are at the sametime ideal can-
didates for �nite{temp erature ab initio simulations in view of their chemical com-
plexity. A host of di�eren t studies 559;100;268;614;545;206;560;598;207;315;208;209;546 con-
tributed greatly to the understandingof thesematerials and the processesoccurring
therein such as the initial stagesof the methanol to gasolineconversion 599. Het-
erogenouscatalysts are often poisoned,which was for instance studied in the case
of hydrogen dissociation on the Pd(100) surface in the presenceadsorbed sulfur
layers 257.

5.11 Biophysics and Biochemistry

Applications of ab initio molecular dynamics to moleculesand processesof interest
in life sciencesbegin to emerge18;113. Investigations related to these interests are
investigationsof the crystal structure of a hydrated RNA duplex (sodium guanylyl{
3'{5'{cytidine nona{hydrate) 311, structure modelsfor the cytochrom P450enzyme
family 547;548;549, nanotubular polypeptides 112, a synthetic biomimetic model of
galactoseoxidase 523, aspects of the processof vision in form of the 11{cis to
all{ trans isomerization in rhodopsin 67;68;474, interconversion pathways of the pro-
tonated � {ionone Schi� base 615, or of the binding properties of small molecules
of physiological relevancesuch as O2, CO or NO to iron{p orphyrines and its com-
plexes527;528;529.

Proton transport throught water wires is an important biophysical processin
the chemiosmotic theory for biochemical ATP production. Using the ab initio
path integral technique 395;399;644;404 the properties of linear water wires with an
excessproton were studied at room temperature 419. Amino acids are important
ingredients as they are the building blocks of polypeptides, which in turn form
channels and pores for ion exchange. Motiv ated by their ubiquit y, glycine and
alanine as well as someof their oligopeptides and helical (periodic) polypeptides
were studied in great detail 323.

5.12 Outlook

Ab initio molecular dynamics is by now not only a standard tool in academicre-
search but also becomesincreasingly attractiv e to industrial researchers. Analysis
of data bases,seecaption of Fig. 1 for details, uncovers that quite a few companies
seemto be interestedin this methodology. Researchersa�liated to Bayer, Corning,
DSM, Dupont, Exxon, Ford, Hitachi, Hoechst, Kodak, NEC, Philips, Pirelli, Shell,
Toyota, Xerox and others cite the Car{P arrinello paper Ref. 108 or use ab initio
molecular dynamics in their work. This trend will certainly be enhancedby the
availabili ty of e�cien t and generalab initio molecular dynamicspackageswhich are
commercially available.
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