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The rapidly growing eld of ab initio molecular dynamics is reviewed in the spirit
of a series of lectures given at the Winterschool 2000 at the John von Neumann
Institute for Computing, Julich. Seweral such molecular dynamics schemes are
compared which arise from following various approximatio nsto the fully coupled
Schrodinger equation for electrons and nuclei. Special focus is given to the Car{
Parrinello method with discussion of both strengths and weaknessesin addition
to its range of applicabilit y. To shed light upon why the Car{P arrinello approach
works sewveral alternate perspectives of the underlying ideas are presented. The
implementation of ab initio molecular dynamics within the framework of plane
wave{pseudop otential density functional theory is given in detail, including diag-
onalization and minimization techniques as required for the Born{Opp enheimer
variant. E cien t algorithms for the most imp ortant computational kernel routines
are presented. The adaptation of these routines to distributed memory parallel
computers is discussed using the implementation within the computer code CPMD
as an example. Seweral advanced techniques from the eld of molecular dynam-
ics, (constant temp erature dynamics, constant pressure dynamics) and electronic
structure theory (free energy functional, excited states) are intro duced. The com-
bination of the path integral method with abinitio molecular dynamics is presented
in detail, showing its limitations and possible extensions. Finally , a wide range of
applications from materials scienceto biochemistry is listed, which shows the enor-
mous potential of ab initioc molecular dynamics for both explaining and predicting
prop erties of molecules and materials on an atomic scale.

1 Setting the Stage: Why Ab Initio Molecular Dynamics ?

Classical molecular dynamics using \prede ned potertials”, either basedon em-
pirical data or on independert electronic structure calculations, is well estab-
lished as a powerful tool to investigate many{b ody condensedmatter systems.
The broadness, diversity, and level of sophistication of this technique is docu-
merted in seweral monographsas well as proceedingsof conferencesand scierti ¢

schools 12:135:270:217:69,59:177 - At the very heart of any molecular dynamics scheme
is the question of how to descrike { that is in practice how to approximate { the
interatomic interactions. The traditional route followedin moleculardynamicsis to
determine these potentials in advance. Typically, the full interaction is broken up
into two{b ody, three{body and many{b ody cortributions, long{range and short{
range terms etc., which have to be represeted by suitable functional forms, see
Sect. 2 of Ref. 2°° for a detailed accourt. After decadesof intensereseart, very
elaborate interaction models including the non{trivial aspect to represen them



analytically were devised?53:539:584,

Despite overwhelming succesy which will howewver not be praisedin this re-
view { the needto devisea \ xed model potential* implies seriousdrawbadks, see
the introduction sectionsof seweral earlier reviews %3472 for a more complete di-
gressionon these aspects. Among the most delicate ones are systemswhere (i)
many di erent atom or moleculetypesgive riseto a myriad of di erent interatomic
interactions that have to be parameterizedand / or (ii) the electronic structure
and thus the bonding pattern changesqualitativ ely in the courseof the simulation.
These systemscan be called \c hemically complex".

The reign of traditional molecular dynamics and electronic structure methods
was greatly extended by the family of techniques that is called here \ ab initio
molecular dynamics". Other namesthat are currently in useare for instance Car{
Parrinello, Hellmann{Feynman, rst principles, quantum chemical, on{the{y , di-
rect, potential{free, quantum, etc. molecular dynamics. The basicidea underlying
ewvery ab initio molecular dynamics method is to compute the forcesacting on the
nuclei from electronic structure calculationsthat are performed\on{the{y" asthe
molecular dynamicstrajectory is generated. In this way, the electronic variablesare
not integrated out beforehand,but are consideredasactive degreesf freedom. This
implies that, given a suitable approximate solution of the many{electron problem,
also \chemically complex" systemscan be handled by molecular dynamics. But
this also implies that the approximation is shifted from the level of selectingthe
model potertial to the level of selectinga particular approximation for solving the
Sdiredinger equation.

Applications of abinitio molecular dynamicsare particularly widespreadin ma-
terials scienceand chemistry, where the aforemertioned di culties (i) and (ii) are
particularly sewere. A collection of problemsthat were already tackled by ab initio
molecular dynamicsincluding the pertinent referencesan be found in Sect.5. The
power of this novel technique leadto an explosionof the activity in this eld in terms
of the number of published papers. The locus can be located in the late{eighties,
seethe squaresin Fig. 1 that can be interpreted as a measureof the activity in
the areaof abinitio molecular dynamics. As a matter of fact the time ewlution of
the number of citations of a particular paper, the one by Car and Parrinello from
1985ertitled \Unied Approach for Molecular Dynamics and Density{F unctional
Theory" 198 parallels the trend in the ertire eld, seethe circlesin Fig. 1. Thus,
the resonancethat the Car and Parrinello paper evoked and the popularity of the
ertire eld gohandin hand in the last decade.Incidentally, the 1985paper by Car
and Parrinello is the last one included in the section \T rends and Prospects” in
the reprint collection of \k ey papers" from the eld of atomistic computer simula-
tions 135, That the ertire eld of abinitio molecular dynamics has grown mature
is also evidencedby a separate PACS classi cation number (71.15.Pd \Electronic
Structure: Molecular dynamics calculations (Car{P arrinello) and other numerical
simulations") that wasintroducedin 1996into the Physicsand Astronomy Classi-
c ation Scheme*®,

Despite its obvious advantages, it is evidert that a price hasto be payed for
putting molecular dynamics on ab initio grounds: the correlation lengths and re-
laxation times that are accessibleare much smaller than what is a ordable via
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Figure 1. Publication and citation analysis. Squares: number of publication s which appeared
up to the year n that contain the keyword \ab initio molecular dynamics" (or synonyma such
as \rst principles MD", \Car{P arrinello simulations" etc.) in title, abstract or keyword list.
Circles: number of publication s which appeared up to the year n that cite the 1985 paper by
Car and Parrinello 198 (including misspellings of the bibliographi c reference). Self{citatio ns and
self{pap ers are excluded, i.e. citations of Ref. 198 in their own papers and papers coauthored by
R. Car and / or M. Parrinello are not considered in the respectiv e statistics. The analysis is based
on the CAPLUS (\Chemical Abstracts Plus"), INSPEC (\Ph ysics Abstracts"), and SCI (\Science
Citation Index") data basesat STN Internation al. Updated statistics from Ref. 405,

standard molecular dynamics. Another appealing feature of standard molecular
dynamicsis lessevidert, namely the \exp erimertal aspect of playing with the po-
tential". Thus, tracing bad the properties of a given systemto a simple physical
picture or medanism is much harder in ab initio molecular dynamics. The bright
sideis that new phenomena,which were not forseenbefore starting the simulation,
can simply happen if necessary This givesab initio molecular dynamics a truly
predictive power.

Ab initio molecular dynamics can also be viewed from another corner, namely
from the eld of classicaltrajectory calculations 649541, In this approad, which
has its origin in gas phase molecular dynamics, a glokal potential energy surface
is constructed in a rst step either empirically or basedon electronic structure
calculations. In a secondstep, the dynamical ewlution of the nuclei is generated
by using classicalmedanics, quantum mecanics or semi/ quasiclassicalapprox-
imations of various sorts. In the caseof using classicalmedanics to descrike the
dynamics{ the focusof the presen overview{ the limiting step for large systemsis



the rst one,why so? There are 3N 6 internal degreesof freedomthat spanthe
global potential energysurfaceof an unconstrainedN {b ody system. Using for sim-
plicity 10 discretization points per coordinate implies that of the order of 103N ©
electronic structure calculations are neededin order to map sud a global potential

energy surface. Thus, the computational workload for the rst step grows roughly
like 10V with increasingsystemsize. This is what might be called the \dimen-

sionality bottlenedk" of calculations that rely on glokal potential energy surfaces,
seefor instance the discussionon p. 420in Ref. 254,

What is neededin abinitio molecular dynamicsinstead? Supposethat a useful
trajectory consists of about 10 molecular dynamics steps, i.e. 10M electronic
structure calculations are neededto generateone trajectory. Furthermore, it is
assumedthat 10" independert trajectories are necessaryin order to averageover
di erent initial conditions sothat 10M*" ab initio molecular dynamics steps are
required in total. Finally, it is assumedthat ead single{point electronic structure
calculation neededto devisethe global potertial energy surface and one ab initio
moleculardynamicstime steprequiresroughly the sameamount of cpu time. Based
on this truly simplistic order of magnitude estimate, the advantage of ab initio
moleculardynamicsvs. calculationsrelying on the computation of a global potential
energysurfaceamourts to about 103N & M " The crucial point is that for a given
statistical accuracy (that is for M and n xed and independert on N) and for a
given electronic structure method, the computational advantage of \on{the{y"
approacesgrows like 10V with systemsize.

Of course,considerableprogresshasbeenachievedin trajectory calculations by
carefully selectingthe discretization points and reducing their number, choosingso-
phisticated represetations and internal coordinates, exploiting symmetry etc. but
basically the scaling 10N with the number of nuclei remains a problem. Other
strategies consist for instance in reducing the number of active degreesof freedom
by constraining certain internal coordinates, represeting lessimportant onesby a
(harmonic) bath or friction, or building up the global potertial energy surfacein
terms of few{body fragmerts. All these approades, howewer, invoke approxima-
tions beyond the onesof the electronic structure method itself. Finally, it is evidert
that the computational advantage of the \on{the{ y"* approacesdiminish asmore
and more trajectories are neededfor a given (small) system. For instance extensive
averaging over many dierent initial conditions is required in order to calculate
quartitativ ely scattering or reactive crosssections. Summarizing this discussion,
it can be concludedthat ab initio molecular dynamics is the method of choice to
investigate large and \c hemically complex” systems.

Quite a few review articles dealing with abinitio molecular dynamics appeared
in the nineties 513:223:472,457:224,158,643,234:463,538:405 gn( the interested readeris re-
ferred to them for various complemenary viewpoints. In the presen overview
article, emphasisis put on both broadnessof the approacesand depth of the pre-
sertation. Concerning the broadness,the discussionstarts from the Sdiredinger
equation. Classical, Ehrenfest, Born{Opp enheimer, and Car{P arrinello molecular
dynamics are \deriv ed" from the time{dependen mean{ eld approad that is ob-
tained after separating the nuclear and electronic degreesof freedom. The most
extensiwe discussionis related to the featuresof the basic Car{P arrinello approad



but all three ab initio approacesto molecular dynamics are corntrasted and partly
compared. The important issueof how to obtain the correct forcesin thesesthemes
is discussedin somedepth. The most popular electronic structure theoriesimple-
mented within ab initio molecular dynamics, density functional theory in the rst
place but also the Hartree{Fock approad, are sketched. Some attention is also
given to another important ingrediert in ab initio molecular dynamics, the choice
of the basisset.

Concerning the depth, the focus of the presen discussionis clearly the im-
plemertation of both the basic Car{P arrinello and Born{Opp enheimer molecular
dynamics schemesin the CPMIpadage #2. The electronic structure approadc
in CPMIs Hoherberg{Kohn{Sham density functional theory within a plane wave
/ pseudomtential implementation and the Generalized Gradient Approximation.
The formulae for energies,forces, stress, pseudoptentials, boundary conditions,
optimization procedures,parallelization etc. are given for this particular choiceto
solve the electronic structure problem. One should, however, keepin mind that
a variety of other powerful ab initio molecular dynamics codes are available (for
instance CASTEP!®, CP-PAW*3, thi98md 8, NWCheM®, VASP®3) which are
partly basedon very similar techniques. The classicCar{P arrinello approach 108
is then extendedto other ensenbles than the microcanonical one, other electronic
statesthan the ground state, and to a fully quantum{mechanical represemation of
the nuclei. Finally, the wealth of problemsthat can be addressedusing ab initio
molecular dynamics is briey sketched at the end, which also senes implicitly as
the \Summary and Conclusions" section.

2 Basic Techniques: Theory

2.1 Deriving Classial Molecular Dynamics

The starting point of the following discussionis non{relativistic quantum medanics
as formalized via the time{dependernt Sdcredinger equation

| g(frig;mlg;t): H(frigfRg1) 1)

in its position represemation in conjunction with the standard Hamiltonian
X 2 2 X 2 2 X ez X eZZ| + X eZZ| ZJ
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for the electronic frjg and nuclear f R| g degreesof freedom. The more corveniert
atomic units (a.u.) will be introduced at a later stage for reasonsthat will soon
becomeclear. Thus, only the bare electron{electron, electron{nuclear, and nuclear{
nuclear Coulomb interactions are taken into accourt.



The goal of this section is to derive classical molecular dynamics 12:270:217
starting from Sdredinger's wave equation and following the elegart route of
Tully 650651 To this end, the nuclear and electronic cortributions to the total
wavefunction ( frig;fR,g;t), which depends on both the nuclear and electronic
coordinates, haveto be separated. The simplest possibleform is a product ansatz

[ 24
(frigfRygit)  ( frigit) (FRygt) exp —  dtFe(ty (3)
to
where the nuclear and electronic wavefunctions are separately normalized to unity
at ewery instant of time, i.e. h ;tj ;ti = 1 and h; tj; ti = 1, respectively. In
addition, a corveniert phasefactor
z

E.= drdR (frigit) *(FRyg;t)He ( frig;t) (fR,g;t) 4)

was introduced at this stage sud that the nal equationswill look nice; RdrdR

refersto the integration overall i = 1;::: and | = 1;::: variablesfrigand fR, g,
respectively. It is mertioned in passingthat this approximation is called a one{
determinant or single{con guration ansatzfor the total wavefunction, which at the
end must leadto a mean{ eld description of the coupleddynamics. Note also that
this product ansatz(excluding the phasefactor) di ers from the Born{Opp enheimer
ansatz 340:3%0 for separating the fast and slow variables

X
so(frigifRg;t) = “k(frigfRig ~«(fRig;t) (%)
k=0

even in its one{determinant limit, whereonly a single electronic state k (evaluated
for the nuclear con guration fR, Q) is included in the expansion.

Inserting the separationansatzEqg. (3) into Egs. (1){(2) yields (after multiplying
from the left by h j and h j and imposing energy consenation diHi =dt  0) the
following relations

X 2 z

[ %= | Zmeriz + drR ?(fR|g;t)Vn (frigifR1g) (fRg;t) (6)
@ X 2, f o,
[ @ = Mr Pt dr “(frigit)He(frig;fRig) ( frig;t) ()

This setof coupledequationsde nes the basisof the time{dependernt self{consistert
eld (TDSCF) method introduced as early as 1930by Dirac 162, seealso Ref. 18,
Both electronsand nuclei move quantum{mechanically in time{dependert e ective
potentials (or self{consisterly obtained average elds) obtained from appropriate
averages(quantum medanical expectation valuesh::i) over the other class of
degreesf freedom(by usingthe nuclearand electronicwavefunctions, respectively).
Thus, the single{determinant ansatz Eq. (3) produces, as already anticipated, a
mean{ eld description of the coupled nuclear{electronic quantum dynamics. This
is the price to pay for the simplest possible separation of electronic and nuclear
variables.



The next step in the derivation of classicalmolecular dynamics is the task to
approximate the nuclei asclassicalpoint particles. How can this be achieved in the
framework of the TDSCF approad, given one quantum{mechanical wave equa-
tion describingall nuclei? A well{known route to extract classicalmedanicsfrom
guantum medanicsin generalstarts with rewriting the correspnding wavefunction

(fRig;t) = A(fR  g;t) exp[iS(fFR g;t)= ] 8

in terms of an amplitude factor A and a phaseS which are both consideredto be
real and A > 0 in this polar represetation, seefor instance Refs. 163:425:535 - After
transforming the nuclear wavefunction in Eq. (7) accordingly and after separating
the real and imaginary parts, the TDSCF equation for the nuclei

4
@ X 1 ) s _ 2% 1 r2A
@'F | M(r |S) + dr He - | M A (9)
@ X 1 X 1 e =
@"' M—l(r |A)(I’ |S)+ | mA r|S - O (10)

is (exactly) re{expressedin terms of the new variables A and S. This so{called
\quantum uid dynamical represemation” Egs. (9){(10) can actually be used to
solve the time{dependert Schredinger equation '%°. The relation for A, Eq. (10),
can be rewritten as a cortinuity equation 163:425:535 with the help of the identi-
cation of the nuclear density j j> A? asdirectly obtained from the de nition
Eqg. (8). This continuity equation is independert of and ensureslocally the con-
senation of the particle probability j j? assaiated to the nuclei in the presenceof
a ux.

More important for the presert purposeis a more detailed discussionof the
relation for S, Eqg. (9). This equation cortains one term that dependson , a
cortribution that vanishesif the classicallimit

z
@ X 1 2 ?
— + - + ? -
@ o (r:S) dr “He 0 (11)
istakenas ! 0; an expansionin terms of would lead to a hierarchy of semi-

classicalmethods 42°:2%°, The resulting equation is now isomorphic to equations of
motion in the Hamilton{Jacobi formulation 244:540

%+H(fR|g;fr 1Sg) =0 (12)

of classicalmedanicswith the classicalHamilton function
H(fRig:fPig) = T(fPig + V(fR0) (13)

de ned in terms of (generalized) coordinates f R, g and their conjugate momerta
fP,g. With the help of the connecting transformation

P, rS (14)



the Newtonian equation of motion B, = r | V(fR,g) correspnding to Eg. (11)
z
dP,

=r , dr ?He or
dt 7
M|R|(t): r dr ?He (15)
=1 Ve (FRi(D9) (16)

can be read o. Thus, the nuclei move according to classical medanics in an

e ectiv e potential VE due to the electrons. This potential is a function of only the

nuclear positions at time t as a result of averagingH . over the electronic degrees
of freedom,i.e. computing its quantum expectation value h jH¢j i, while keeping
the nuclear positions xed at their instantaneousvaluesf R (t)g.

Howewer, the nuclear wavefunction still occursin the TDSCF equation for the
electronicdegreef freedomand hasto be replacedby the positions of the nuclei for
consistency In this casethe classicalreduction can be achieved simply by replacing
the nucle%densilyj (fFRyg;1)j? in Eq. (6) in the limit ! 0 by a product of delta
functions ~, (R} R/ (t)) certered at the instantaneouspositions f R (t)g of the
classicalnuclei as given by Eqg. (15). This yields e.g. for the position operator

z

0

dR "(fFRigH R (FRigit) 1° Ri(t) 17)

the required expectation value. This classicallimit leadsto a time{dependert wave
equation for the electrons

. @ X 2
i @: | 2meri + VW o(frig;fR (1)g)
= He(frig;fRy (1)g) ( frig;fRg;t) (18)

which ewlve self{consistenly as the classicalnuclei are propagated via Eq. (15).
Note that now He and thus  depend parametrically on the classicalnuclear posi-
tions f R, (t)g at time t through V, <(frig;fR,(t)g). This meansthat feedba&
between the classical and quantum degreesof freedom is incorporated in both
directions (at variance with the \classical path" or Mott non{SCF approac to
dynamics 8°0:651),

The approad relying on solving Eq. (15) together with Eq. (18) is sometimes
called \Ehrenfest molecular dynamics" in honor of Ehrenfest who wasthe rst to
addressthe question 2 of how Newtonian classicaldynamics can be derived from
Sdredinger's wave equation 4. In the presen casethis leadsto a hybrid or
mixed approad becauseonly the nuclei are forcedto behave lik e classicalparticles,
whereasthe electronsare still treated as quantum objects.

Although the TDSCF approad underlying Ehrenfest molecular dynamics
clearly is a mean{ eld theory, transitions between electronic states are included

aThe opening statement of Ehrenfest's famous 1927 paper 174 reads:

\Es ist wenschenswert, die folgende Frage meglichst elementar beantworten zu kennen: Welcher
Ruckblick ergibt sich vom Standpunkt der Quantenmechanik auf die Newtonschen Grundgleichun-
gen der klassischen Mechanik?"



in this scheme. This can be made evidert by expanding the electronic wavefunc-
tion  (as opposedto the total wavefunction accordingto Eq. (5)) in terms of
many electronic states or determinants

R
(frig;fRyg;t) = a(t) k(friggfRig) (19)
k=0

ith complex coe cien ts fcc(t)g. In this case,the coe cients fjcc(t)j?g (with

cic(t)j? 1) describe explicitly the time ewolution of the populations (occupa-
tions) of the di erent statesf kg whereasinterferencesare included via the f ¢/ e« g
cortributions. One possiblechoicefor the basisfunctionsf (gisthe adiabatic basis
obtained from solving the time{indep enden electronic Schredinger equation

He(frigifRig) « = Ex(fR19) «(frig;fR,0) ; (20)

wheref R, g are the instantaneousnuclear positions at time t accordingto Eqg. (15).
The actual equations of motion in terms of the expansion coe cien ts fcyg are
presened in Sect.2.2.

At this stage a further simpli cation can be invoked by restricting the total
electronic wave function  to be the ground state wave function ¢ of He at eah
instant of time accordingto Eq. (20) and jco(t)j> 1 in Eq. (19). This shouldbe a
good approximation if the energydi erence between ( and the rst excited state

1 is everywhere large comparedto the thermal energykg T, roughly speaking. In
this limit the nuclei move accordingto Eq. (15) on a single potential energysurface
z

VE=  dr JHe o Eo(fRiQ) (21)

that canbe computed by solving the time{independentelectronic Schredinger equa-
tion Eq. (20)

He 0= Eo o (22)

for the ground state only. This leadsto the identi cation VE Eq via Eq. (21),
i.e. in this limit the Ehrenfest potential is identical to the ground{state Born{
Oppenheimerpotential.

As a consequencef this obsenation, it is conceiable to decouplethe task of
generating the nuclear dynamics from the task of computing the potential energy
surface. In a rst step Eq is computed for many nuclear con gurations by solving
Eg. (22). In a secondstep, these data points are tted to an analytical functional
form to yield a global potential energysurface®3°, from which the gradierts can be
obtained analytically. In a third step, the Newtonian equation of motion Eq. (16)
is solved on this surfacefor many di erent initial conditions, producing a \swarm"
of classicaltrajectories. This is, in a nutshell, the basis of classial trajectory cal-
culations on global potential energy surfaces®49:541,

As already alluded to in the generalintro duction, sud approadessu er seerely
from the \dimensionality bottlened" asthe number of active nuclear degreesof
freedomincreases.One traditional way out of this dilemma is to approximate the



global potertial energysurface

E appro x >(\I >(\I
Vo  VIPPOX(fR, Q) = vi(Ry) + V2(R1;Ry)
1=1 <J

X
+ v3(Ri;R3;Rk) + (23)
1<J <K

in terms of a truncated expansionof many{b ody cortributions 2°3:12:270 At this
stage,the electronic degreesof freedomare replacedby interaction potentials fv,g
and are not featured asexplicit degreesf freedomin the equationsof motion. Thus,
the mixed quantum / classical problem is reducedto purely classicalmedanics,
oncethe fv,g are determined. Classial molecular dynamics

MR (t) = r | VPOX(FR, (1)g) (24)

relies crucially on this idea, where typically only two{body v, or three{body vs
interactions are taken into accourt 12279, although more sophisticated models to
include non{additiv e interactions sudh as polarization exist. This amounts to a
dramatic simpli cation and removes the dimensionality bottleneck as the global
potential surfaceis constructed from a manageablesum of additiv e few{body con-
tributions | at the price of introducing a drastic approximation and of basically
excluding chemical transformations from the realm of simulations.

As a result of this derivation, the essetial assumptions underlying classical
molecular dynamicsbecometransparert: the electronsfollow adiabatically the clas-
sical nuclear motion and can be integrated out sothat the nuclei ewlve on a single
Born{Opp enheimerpotential energysurface(typically but not necessarilygiven by
the electronic ground state), which is in generalapproximated in terms of few{b ody
interactions.

Actually, classical molecular dynamics for manyb ody systemsis only made
possibleby somehav decomposingthe global potential energy In order to illustrate
this point considerthe simulation of N = 500 Argon atoms in the liquid phase?!’®
where the interactionsscan faithfully be described by additive two{body terms,
i.e. VAPOX(fR,g) |N<J V2(JR1  Ryj). Thus, the determination of the pair
potential v, from ab initio electronic structure calculations amounts to computing
and tting a one{dimensional function. The correspnding task to determine a
global potential energy surfaceamourts to doing that in about 10'°%° dimensions,
which is simply impossible(and on top of that not necessaryfor Nobel gases!).

2.2 EhrenfestMolecular Dynamics

A way out of the dimensionality bottlenedk other than to approximate the global
potential energysurfaceEq. (23) or to reducethe number of active degreesof free-
domis to take seriouslythe classicalnuclei approximation to the TDSCF equations,
Eqg. (15) and (18). This amourts to computing the Ehrenfestforce by actually solv-

10



ing numerically

VA
MR (t)=r dr ?He
=1 hHg (29)
=T IVeE #
. @ X 2
i 6: >m ri+Vn e(fr|gyfR|(t)g)
. e
. (26)

the coupled set of equations simultaneously. Thereby, the a priori construction
of any type of potential energy surfaceis avoided from the outset by solving the
time{dependen electronic Schredinger equation \on{the{y".  This allows one to
computethe forcefrom r | hHgi for ead con guration f R/ (t)g generatedby molec-
ular dynamics; seeSect.2.5for the issueof usingthe so{called\Hellmann{F eynman
forces" instead.

The correspnding equationsof motion in terms of the adiabatic basis Eq. (20)
and the time{dependert expansioncoe cien ts Eq. (19) read 650:65!

X X
MR (1) = jok(1)j%r | Ex ¢ (Ex  Ej)df (27)
k kil
X
i G(t)= a(®Ex i gRd ; (28)

[N

where the coupling terms are given by
z

di(fRy (@) = dr {ry (29)

with the property dkk 0. The Ehrenfestapproad is thus seento include rigor-
ously non{adiabatic transitions betweendi erent electronicstates  and | within
the framework of classicalnuclear motion and the mean{eld (TDSCF) approxi-
mation to the electronic structure, seee.g. Refs. 6°0:651 for reviewsand for instance
Ref. 532 for an implementation in terms of time{dependen density functional the-
ory.

The restriction to one electronic state in the expansion Eq. (19), which is in
most casesthe ground state g, leadsto

M|R|(t): r |h OjHej Oi (30)
i %: He o (31)

asa special caseof Egs. (25){(26); note that H. is time{dependert via the nuclear
coordinatesf R (t)g. A point worth mertioning hereis that the propagation of the
wavefunction is unitary, i.e. the wavefunction presenes its norm and the set of
orbitals usedto build up the wavefunction will stay orthonormal, seeSect. 2.6.
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Ehrenfest molecular dynamics is certainly the oldest approac to \on{the{y"
molecular dynamics and is typically usedfor collision{ and scattering{type prob-
lems 154:649:426:532 Howevwer, it was never in widespreadusefor systemswith many
active degreesof freedomtypical for condensedmatter problems for reasonsthat
will be outlined in Sec.2.6 (although a few exceptionsexist 553:34:203:617 Kt here
the number of explicitly treated electronsis fairly limited with the exception of
Ref. 617,

2.3 Born{Oppenheimer Molecular Dynamics

An alternativ e approad to include the electronic structure in molecular dynamics
simulations consistsin straightforwardly solving the static electronic structure prob-
lem in ead molecular dynamics step giventhe set of xed nuclear positions at that
instance of time. Thus, the electronic structure part is reducedto solving a time{
independent quantum problem, e.g. by solving the time{indep endert Scredinger
equation, concurrertly to propagating the nuclei via classicalmolecular dynamics.
Thus, the time{dependenceof the electronic structure is a consequencef nuclear
motion, and not intrinsic asin Ehrenfest molecular dynamics. The resulting Born{
Oppenheimer molecular dynamics method is de ned by

M|R|(t): r |minfh OjHej 0|g (32)
Eo [ He 0 (33)

for the electronic ground state. A deep di erence with respect to Ehrenfest dy-
namics concerning the nuclear equation of motion is that the minimum of hHei
hasto be reated in eatch Born{Opp enheimer molecular dynamics step according
to Eqg. (32). In Ehrenfest dynamics, on the other hand, a wavefunction that min-
imized hHgi initially will also stay in its respective minimum as the nuclei move
accordingto Eq. (30)!

A natural and straightforward extension?8! of ground{state Born{Opp enheimer
dynamics is to apply the samescemeto any excited electronic state | without
considering any interferences. In particular, this meansthat also the \diagonal

correction terms" 340 .

DI¥(FR) (t)g) = dr ¢r? o« (34)

are always neglected; the inclusion of sud terms is discussedfor instance in
Refs. 650651 These terms renormalize the Born{Opp enheimer or \clamp ed nu-
clei" potential energy surface Ex of a given state ¢ (which might also be the
ground state () and lead to the so{called \adiabatic potential energy surface"
of that state 34°, Whence, Born{Opp enheimer molecular dynamics should not be
called \adiabatic molecular dynamics", asis sometimedone.

It is useful for the sake of later referenceto formulate the Born{Opp enheimer
equationsof motion for the special caseof e ectiv e one{particle Hamiltonians. This
might be the Hartree{Fock approximation de ned to be the variational minimum
of the energyexpectation valueh ojH¢j oi givenasingleSlater determinant ¢ =
detf ;g subject to the constraint that the one{particle orbitals ; are orthonormal
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hij ;i= 4. The correspnding constraint minimization of the total energywith
respect to the orbitals

minfh ojHe oig (35)
tig faij ji= g
can be castinto Lagrange'sformalism
X
L = h OjHej 0i+ i (h,j ji ij) (36)

i
where j are the asswiated Lagrangian multipliers. Unconstrained variation of
this Lagrangian with respect to the orbitals

L 1o (37)

leadsto the well{known Hartree{Fock equations

H';F i = i (38)

i
asderivedin standard text books ¢%4:418; the diagonalcanonicalform HEF =
is obtained after a unitary transformation and HHF denotesthe e ective one{

particle Hamiltonian, see Sect. 2.7 for more details. The equations of motion
correspnding to Egs. (32){(33) read

M|R|(t) = r fmln 0 HSF 0 (39)
ig
0=H ';F e i (40)

for the Hartree{Fock case. A similar set of equations is obtained if Hoherberg{
Kohn{Sham density functional theory 4°8:168 js used,where H!F hasto be replaced
by the Kohn{Sham e ectiv e one{particle Hamiltonian H XS, seeSect. 2.7 for more
details. Instead of diagonalizing the one{particle Hamiltonian an alternativ e but
equivalent approad consistsin directly performing the constraint minimization
accordingto Eq. (35) via nonlinear optimization techniques.

Early applications of Born{Opp enheimer molecular dynamics were performed
in the framework of a semiempiricalapproximation to the electronicstructure prob-
lem 869:671 But only afewyearslater an abinitio approac wasimplemented within
the Hartree{Fock approximation 365, Born{Opp enheimerdynamics started to be-
comepopular in the early nineties with the availabilit y of more e cien t electronic
structure codesin conjunction with su cien t computer power to solve \in teresting
problems"”, seefor instance the compilation of suc studiesin Table 1 in a recen
overview article &2,

Undoubtedly, the breakthrough of Hoherberg{Kohn{Sham density functional
theory in the realm of chemistry { which took place around the sametime { also
helped a lot by greatly improving the \price / performanceratio” of the electronic
structure part, seee.g. Refs. %459 A third and possibly the crucial reasonthat
boostedthe eld of abinitio moleculardynamicswasthe pioneeringintroduction of
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the Car{P arrinello approac %8, seealso Fig. 1. This technique opened novel av-
eruesto treat large{scaleproblemsvia ab initio molecular dynamics and catalyzed
the ertire eld by making \in teresting calculations" possible, seealso the closing
section on applications.

2.4 Car{Parrinel lo Molecular Dynamics
2.4.1 Motivation

A non{obvious approad to cut down the computational expensesof molecular dy-
namics which includes the electronsin a single state was proposed by Car and
Parrinello in 19851%, In retrospect it can be consideredto combine the advan-
tagesof both Ehrenfestand Born{Opp enheimermolecular dynamics. In Ehrenfest
dynamics the time scaleand thus the time step to integrate Egs. (30) and (31)
simultaneously is dictated by the intrinsic dynamics of the electrons. Since elec-
tronic motion is much faster than nuclear motion, the largest possibletime step
is that which allows to integrate the electronic equations of motion. Contrary
to that, there is no electron dynamics whatsoever involved in solving the Born{
Oppenheimer Egs. (32){(33), i.e. they can be integrated on the time scalegiven
by nuclear motion. Howewer, this meansthat the electronic structure problem
hasto be solved self{consisterlly at eath molecular dynamics step, whereasthis is
avoided in Ehrenfest dynamics due to the possibility to propagate the wavefunc-
tion by applying the Hamiltonian to an initial wavefunction (obtained e.g. by one
self{consistent diagonalization).

From an algorithmic point of view the main task achieved in ground{state
Ehrenfest dynamics is simply to keep the wavefunction automatically minimized
asthe nuclei are propagated. This, however, might be achieved { in principle { by
another sort of deterministic dynamics than rst{order Sdredinger dynamics. In
summary, the \Best of all Worlds Method" should (i) integrate the equations of
motion on the (long) time scalesetby the nuclear motion but nevertheless(ii) take
intrinsically advantage of the smooth time{evolution of the dynamically ewlving
electronic subsystemas much as possible. The secondpoint allows to circumvent
explicit diagonalization or minimization to solve the electronic structure problem
for the next molecular dynamics step. Car{P arrinello molecular dynamicsis an ef-
cient method to satisfy requiremert (ii) in a numerically stable fashion and makes
an acceptablecompromiseconcerningthe length of the time step (i).

2.4.2 Car{Parrinel lo Lagrangian and Equations of Motion

The basic idea of the Car{Parrinello approach can be viewed to exploit the
guantum{mechanical adiabatic time{scale separation of fast electronic and slow
nuclear motion by transforming that into classical{medanical adiabatic energy{
scaleseparationin the framework of dynamical systemstheory. In order to achieve
this goal the two{componert quantum / classicalproblem is mapped onto a two{
componert purely classicalproblem with two separateenergyscalesat the expense
of loosingthe explicit time{dep endenceof the quantum subsystemdynamics. Fur-
thermore, the certral quartity, the energy of the electronic subsystemh (jH¢j oi
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evaluated with somewavefunction o, is certainly a function of the nuclear posi-
tions fR;g. But at the sametime it can be consideredto be a functional of the
wavefunction ¢ and thus of a set of one{particle orbitals f ;g (or in general of
other functions sud as two{particle geminals)usedto build up this wavefunction
(being for instance a Slater determinant o = detf ;g or a combination thereof).
Now, in classicalmedanics the force on the nuclei is obtained from the deriva-
tive of a Lagrangian with respect to the nuclear positions. This suggeststhat a
functional derivative with respect to the orbitals, which are interpreted as classical
elds, might yield the force on the orbitals, given a suitable Lagrangian. In addi-
tion, possibleconstraints within the set of orbitals have to be imposed,suc ase.g.
orthonormality (or generalizedorthonormality conditions that include an overlap
matrix).
Car and Parrinello postulated the following classof Lagrangians 18
X1 X1 D E o .
Lee = SMIRTH S0 4 5 PLJTZeJ_Oi +  fonsgaints,  (41)
| ! {i } poten‘tia| energy Orthonormality
kinetic energy

to sene this purpose. The correspnding Newtonian equations of motion are ob-
tained from the assaiated Euler{Lagrange equations

d@a _ @

- = - = 42
dt@R_l @R, ( )
d L _ L

Tl (43)

likein classicalmedanics, but herefor both the nuclear positions and the orbitals;
note 7 = h jj and that the constraints are holonomic 2*4. Following this route of

ideas, genericCar{P arrinello equations of motion are found to be of the form

MR (t) = £ h ojHe ol + @T@lfconstraintsg (44)
i %i(t) = >N ojHej of + — fconstraintsg (45)

| |
where ; (= ) arethe \ctitious masses"or inertia parameters assignedto the
orbital degreesof freedom; the units of the massparameter are energytimes a
squaredtime for reasonsof dimensionality. Note that the constraints within the
total wavefunction leadto \constraint forces"in the equationsof motion. Note also
that theseconstraints

constraints = constraints (f ig;fR, Q) (46)

might be a function of both the setof orbitals f ;g and the nuclear positionsfR g.

These dependencieshave to be taken into account properly in deriving the Car{

Parrinello equationsfollowing from Eq. (41) using Egs. (42){(43), seeSect. 2.5 for

a generaldiscussionand seee.qg. Ref. 3! for a casewith an additional dependence
of the wavefunction constraint on nuclear positions.
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According to the Car{P arrinello equations of motiog, the nuclei ewlve in time
at a certain (instantaneoHs) physical temperature / M| R2, whereasa \c-
titious temperature" / i ih4j 4i is asseiated to the electronic degreesof
freedom. In this terminology, \low electronic temperature" or \cold electrons"
meansthat the electronic subsystemis closeto its instantaneous minimum energy
min; gh ojHej of, i.e. closeto the exact Born{Opp enheimer surface. Thus, a
ground{state wavefunction optimized for the initial con guration of the nuclei will
stay closeto its ground state alsoduring time ewlution if it is kept at a su cien tly
low temperature.

The remaining task is to separatein practice nuclear and electronic motion suc
that the fast electronic subsystemstays cold also for long times but still follows
the slow nuclear motion adiabatically (or instantaneously). Simultaneously, the
nuclei are neverthelesskept at a much higher temperature. This can be achieved
in nonlinear classicaldynamics via decoupling of the two subsystemsand (quasi{)
adiabatic time ewlution. This is possible if the power spectra stemming from
both dynamics do not have substartial overlap in the frequency domain so that
energy transfer from the \hot nuclei" to the \cold electrons" becomespractically
impossibleon the relevant time scales. This amounts in other wordsto imposingand
maintaining a metastability condition in a complexdynamical systemfor su cien tly
long times. How and to which extend this is possiblein practice wasinvestigatedin
detail in an important investigation basedon well{controlled model systems#67:468
(seealso Sects.3.2 and 3.3in Ref. °13), with more mathematical rigor in Ref. 86,
and in terms of a generalizationto a secondlevel of adiabaticity in Ref. 411,

2.4.3 Why Does the Car{Parrinel lo Methad Work ?

In order to shedlight on the title question, the dynamics generatedby the Car{
Parrinello Lagrangian Eq. (41) is analyzed %67 in more detail invoking a \classical
dynamics perspective” of a simple model system (eight silicon atoms forming a
periodic diamond lattice, local density approximation to density functional theory,
normconserving pseudoptentials for core electrons, plane wave basis for valence
orbitals, 0.3 fs time step with = 300a.u., in total 20 000time stepsor 6.3 ps),
for full details seeRef. #¢7); a concisepreseitation of similar ideas can be found
in Ref. 119 For this systemthe vibrational density of states or power spectrum
of the electronic degreesof freedom, i.e. the Fourier transform of the statistically
averagedvelocity autocorrelation function of the classical elds
Z, X D E
f(l)= dtcos( t) 4+t 40 (47)
0 _

is comparedto the highest{frequency phonon mode ! I"® of the nuclear subsystem
in Fig. 2. From this gure it is evidert that for the chosenparametersthe nuclear
and electronic subsystemsare dynamically separated: their power spectra do not
overlap sothat energy transfer from the hot to the cold subsystemis expected to
be prohibitiv ely slow, seeSect. 3.3 in Ref. 512 for a similar argumert.

This is indeed the caseas can be veri ed in Fig. 3 wherethe consened energy
Econs, physicaltotal energyEpnys, electronicenergyVe, and ctitious kinetic energy
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Figure 2. Vibrational density of states Eq. (47) (contin uousspectrum in upp er part) and harmonic
approximation thereof Eq. (52) (stick spectrum in lower part) of the electronic degreesof freedom

compared to the highest{freq uency phonon mode ! "® (triangle) for a model system; for further
details seetext. Adapted from Ref. 467,

of the electronsTe

W)

X

1 E X 1 L
Econs = 50+ + éMl Ry + h ojH¢ ol (48)
i |
X 1 ) L
Ephys = EMI R+ h ojHe oi = Econs Te (49)
|
Ve = ;1( oj|1'| el Doi E (50)
Te = é i -+ -+ (51)

|

are shawn for the samesystemasa function of time. First of all, there should be a
consened energyquartit y accordingto classicaldynamics sincethe constraints are
holonomic?#4. Indeed\the Hamiltonian" or consened energyE cons is a constart of
motion (with relative variations smallerthan 10 © and with no drift), which senes
as an extremely sensitive chedk of the molecular dynamics algorithm. Contrary
to that the electronic energy Ve displays a simple oscillation pattern due to the
simplicity of the phonon modes.

Most importantly, the ctitious kinetic energy of the electrons T, is found to
perform bound oscillations around a constant, i.e. the electrons\do not heat up"
systematically in the presenceof the hot nuclei; note that Te is a measurefor devi-
ations from the exact Born{Opp enheimersurface. Closerinspection shows actually
two time scalesof oscillations: the onevisible in Fig. 3 stemsfrom the drag exerted
by the moving nuclei on the electronsand is the mirror image of the V. uctuations.
Superimposedon top of that (not shawn, but seeFig. 4(b)) are small{amplitude
high frequencyoscillationsintrinsic to the ctitious electrondynamicswith a period
of only a fraction of the visible mode. These oscillations are actually instrumental

17



-7.18

(a.u.)

Energy
<

3x10
memwwfwwvwwmw e
ih

0 7 140 147 252 259

3
t (10 a.u.)

Figure 3. Various energiesEqgs. (48){(51) for a model system propagated via Car{P arrinello molec-
ular dynamics for at short (up to 300 fs), intermediate, and long times (up to 6.3 ps); for further
details seetext. Adapted from Ref. 467,

for the stability of the Car{P arrinello dynamics, vide infra. But already the visible
variations are three orders of magnitude smaller than the physically meaningful os-
cillations of Ve. As aresult, Epnys de ned asEcons  Te Or equivalertly asthe sum
of the nuclear kinetic energy and the electronic total energy (which senes as the
potential energy for the nuclei) is essetially constart on the relevant energy and
time scales.Thus, it behavesapproximately likethe strictly consened total energy
in classicalmolecular dynamics (with only nuclei as dynamical degreesof freedom)
or in Born{Opp enheimer molecular dynamics (with fully optimized electronic de-
greesof freedom) and is therefore often denoted as the \physical total energy".
This implies that the resulting physically signi cant dynamics of the nuclei yields
an excellen approximation to microcanonical dynamics (and assumingergadicity
to the microcanonical ensentle). Note that a di erent explanation was advocated
in Ref. 470 (seealso Ref. 472, in particular Sect.VIII.B and C), which was however
revisedin Ref. 119, A discussionsimilar in spirit to the one outlined here 467 is
provided in Ref. 513, seein particular Sect.3.2 and 3.3.

Giventhe adiabatic separationand the stability of the propagation, the certral
guestion remains if the forcesacting on the nuclei are actually the \correct" ones
in Car{P arrinello molecular dynamics. As a referencesene the forces obtained
from full self{consistert minimizations of the electronic energymin; ,4h ojH¢j ol
at ead time step, i.e. Born{Opp enheimermolecular dynamics with extremely well
corverged wavefunctions. This is indeed the caseas demonstrated in Fig. 4(a):
the physically meaningful dynamics of the x{componert of the force acting on one
silicon atom in the model system obtained from stable Car{P arrinello ctitious
dynamics propagation of the electronsand from iterativ e minimizations of the elec-
tronic energy are extremely close.

Better resolution of one oscillation period in (b) revealsthat the grossdevia-
tions are also oscillatory but that they are four orders of magnitudes smaller than
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Figure 4. (a) Comparison of the x{comp onent of the force acting on one atom of a model system
obtained from Car{P arrinello (solid line) and well{con verged Born{Opp enheimer (dots) molecular
dynamics. (b) Enlarged view of the dierence between Car{P arrinello and Born{Opp enheimer
forces; for further details seetext. Adapted from Ref. 467,

the physical variations of the force resolved in Fig. 4(a). These correspnd to the
\large{amplitude" oscillations of T visible in Fig. 3 due to the drag of the nuclei
exerted on the quasi{adiabatically following electrons having a nite dynamical
mass . Note that the inertia of the electronsalso dampensarti cially the nuclear
motion (typically on a few{percert scale,seeSect.V.C.2 in Ref. /> for an anal-
ysis and a renormalization correction of M) but decreasesasthe ctitious mass
approadesthe adiabatic limit ! 0. Superimposedon the grossvariation in (b)
are again high{frequency bound oscillatory small{amplitude uctuations likefor Te.
They lead on physially relevanttime sales (i.e. those visible in Fig. 4(a)) to \av-
eragedforces” that are very closeto the exact ground{state Born{Opp enheimer
forces. This feature is an important ingrediert in the derivation of adiabatic dy-
namics 467:411,

In conclusion,the Car{P arrinello force can be saidto deviate at most instants of
time from the exact Born{Opp enheimerforce. Howewer, this doesnot disturb the
physical time ewlution dueto (i) the smallnessand boundednessof this di erence
and (i) the intrinsic averaginge ect of small{amplitude high{frequency oscillations
within a few molecular dynamicstime steps,i.e. on the sub{femtosecondtime scale
which is irrelevant for nuclear dynamics.

2.4.4 How to Control Adiabaticity ?

An important question is under which circumstancesthe adiabatic separationcan
be achieved, and how it can be cortrolled. A simple harmonic analysis of the
frequencyspectrum of the orbital classical elds closeto the minimum de ning the
ground state yields 467

Ly = S ; (52)
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where ; and ; are the eigervalues of occupied and unoccupied orbitals, respec-
tively; seeEq. (26) in Ref. 467 for the casewhere both orbitals are occupied ones.
It can be seenfrom Fig. 2 that the harmonic approximation works faithfully as
comparedto the exact spectrum; seeRef. 4’ and Sect.IV.A in Ref. 4’2 for a more
general analysis of the assiated equations of motion. Since this is in particu-
lar true for the lowest frequency! ", the handy analytic estimate for the lowest
possibleelectronic frequency

1=2
i E

Lgn o =% ; (53)
shaows that this frequency increaseslike the squareroot of the electronic energy
di erence Egap between the lowest unoccupied and the highest occupied orbital.
On the other hand it increasessimilarly for a decreasing ctitious massparameter

In order to guarartee the adiabatic separation, the frequencydi erence ! "

I max should be large, seeSect. 3.3 in Ref. 52 for a similar argumert. But both
the highest phonon frequency! '® and the energygap E4ap are quartities that a
dictated by the physics of the system. Whence, the only parameter in our hands
to control adiabatic separationis the ctitious mass,which is therefore also called
\adiabaticit y parameter". Howewer, decreasing not only shifts the electronic
spectrum upwards on the frequency scale,but also stretches the entire frequency
spectrum accordingto Eq. (52). This leadsto anincreaseof the maximum frequency
accordingto

1=2

Ecut : (54)

max
| max

where E¢,: is the largest kinetic energy in an expansion of the wavefunction in
terms of a plane wave basis set, seeSect. 3.1.3.

At this place a limitation to decrease arbitrarily kicksin dueto the maximum
length of the molecular dynamicstime step t™® that canbe used. The time step
is inverselyproportional to the highest frequencyin the system,which is ! ' and
thus the relation

max
tmex E (55)
governs the largest time step that is possible. As a consequenceCar{P arrinello
simulators haveto nd their way betweenScylla and Charybdis and have to make
a compromiseon the control parameter ; typical valuesfor large{gap systemsare
= 500{1500 a.u. together with a time step of about 5{10 a.u. (0.12{0.24 fs).
Recerily, an algorithm wasdevisedthat optimizes during a particular simulation
givena xed accuracy criterion 8. Note that a poor man's way to keepthe time
step large and still increase in order to satisfy adiabaticity is to choose heavier
nuclear masses.That depresseghe largest phonon or vibrational frequency! '@
of the nuclei (at the cost of renormalizing all dynamical quartities in the senseof
classicalisotope e ects).
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Up to this point the ertire discussionof the stability and adiabaticity issues
was basedon model systems,approximate and mostly qualitativ e in nature. But
recenly it wasactually proven 8 that the deviation or the absoluteerror of the
Car{P arrinello trajectory relative to the trajectory obtained on the exact Born{
Oppenheimerpotential energysurfaceis cortrolled by
Theorem 1 iv.): There are constantsC > 0 and ? > 0 suchthat

= R (t) RO™t) + | ;ti Ot c¥ .0t T (56

and the ctitious kinetic enemy satis es

1 D E
Tezé it —;t cC ;0 t T (57)

for all valuesof the parameter satisfying 0 < ?, whereup to time T > 0
there exists a unique nuclear trajectory on the exact Born{Opp enheimer surface
with ' ™ > 0for 0 t T, ie. thereis\always" a nite electronic excitation

gap. Here, the superscript  or O indicates that the trajectory was obtained via
Car{P arrinello molecular dynamics using a nite mass or via dynamics on the
exact Born{Opp enheimer surface, respectively. Note that not only the nuclear
trajectory is shovn to be closeto the correct one, but also the wavefunction is
proven to stay closeto the fully converged one up to time T. Furthermore, it

was also investigated what happensif the initial wavefunction at t = 0 is not the
minimum of the electronic energyhHei but trappedin an excited state. In this case
it is found that the propagated wavefunction will keepon oscillating at t > 0 also
for | 0andnot eventime averagescorvergeto any of the eigenstates.Note that

this doesnot preclude Car{P arrinello moleculardynamicsin excited states,which is
possiblegivena properly \minimizable" expressionfor the electronic energy seee.g.
Refs. 281214 Howewer, this nding might have crucial implications for electronic
level{crossing situations.

What happensif the electronic gap is very small or even vanishesEgap ! 0
as is the casefor metallic systems? In this limit, all the above{given argumerts
break down due to the occurrenceof zero{frequencyelectronic modesin the power
spectrum accordingto Eq. (53), which necessarilyoverlap with the phonon spec-
trum. Following an idea of Sprik 583 applied in a classicalcortext it was shown
that the coupling of separateNose{Hoover thermostats 1%:270:217 tg the nuclear and
electronic subsystemcan maintain adiabaticity by courterbalancing the energy ow
from ions to electronssothat the electronsstay \cool" 74; seeRef. %4 for a simi-
lar idea to restore adiabaticity. Although this method is demonstratedto work in
practice 464, this ad hac cureis not ertirely satisfactory from both a theoretical and
practical point of view sothat the well{controlled Born{Opp enheimerapproad is
recommendedfor strongly metallic systems. An additional advantage for metal-
lic systemsis that the latter is also better suited to sample many k{p oints (see
Sect. 3.1.3), allows easily for fractional occupation numbers %8168 and can handle
e cien tly the so{called charge sloshingproblem 472,
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2.4.5 The Quantum Chemistry Viewpoint

In order to understand Car{P arrinello molecular dynamics alsofrom the \quantum
chemistry perspective”, it is usefulto formulate it for the special caseof the Hartree{
Fock approximation using
X 1 X 1 D E
Lep = §M| R.|2 + ;

éi -+ —+
ojHe j o + j (hij i ) (58)

The resulting equations of motion
MiRi(t)=r1 1+ o H)%'F 0 (59)

i) = H 8o+ i (60)
j

are very close to those obtained for Born{Opp enheimer molecular dynamics
Egs. (39){(40) except for (i) no needto minimize the electronic total energy ex-
pressionand (ii) featuring the additional ctitious kinetic energyterm assaiated
to the orbital degreesof freedom. It is suggesti\e to argue that both sets of equa-
tions becomeidentical if the term j ; *(t)j is small at any time t comparedto the
physically relevant forceson the right{hand{side of both Eq. (59) and Eq. (60).
This term being zero (or small) meansthat oneis at (or closeto) the minimum of
the electronic energyh ojHHFj i sincetime derivativesof the orbitals f ;g can
be consideredas variations of o and thus of the expectation value hHEF i itself.
In other words, no forcesact on the wavefunctionif ;°*; 0. In conclusion,the
Car{P arrinello equations are expected to produce the correct dynamics and thus
physical trajectories in the microcanonical ensenple in this idealized limit. But
if j i *g(t)j is small for all i, this also implies that the asseiated kinetic energy
Te = i ih+j 4i=2 is small, which connectsthese more qualitativ e argumerts
with the previous discussion67.

At this stage,it is alsointeresting to comparethe structure of the Lagrangian
Eg. (58) and the Euler{Lagrange equation Eq. (43) for Car{P arrinello dynamicsto
the analoguesequations (36) and (37), respectively, usedto derive \Hartree{F ock
statics”. The former reduceto the latter if the dynamical aspect and the assaiated
time ewlution is neglected, that is in the limit that the nuclear and electronic
momerta are abser or constart. Thus,the Car{P arrinello ansatz,namely Eq. (41)
together with Egs. (42){(43), can also be viewed as a prescription to derive a new
classof \dynamical abinitio methods" in very generalterms.

2.4.6 The Simulated Annealing and Optimization Viewpoints

In the discussiongiven above, Car{P arrinello molecular dynamics was motivated
by \combining" the positive features of both Ehrenfest and Born{Opp enheimer
molecular dynamics as much as possible. Looked at from another side, the Car{
Parrinello method can also be consideredas an ingenious way to perform glokal
optimizations (minimizations) of nonlinear functions, hereh ojH¢ o, in a high{
dimensional parameter spaceincluding complicated constraints. The optimization
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parametersarethoseusedto represen the total wavefunction ¢ in terms of simpler
functions, for instance expansioncoe cien ts of the orbitals in terms of Gaussians
or plane waves, seee.g. Refs, 583:375:693:608 for gpplications of the sameidea in
other elds.

Keeping the nuclei frozen for a momert, one could start this optimization pro-
cedurefrom a \random wavefunction" which certainly doesnot minimize the elec-
tronic energy Thus, its ctitious kinetic energy is high, the electronic degreesof
freedom are \hot". This energy howewer, can be extracted from the system by
systematically cooling it to lower and lower temperatures. This can be achieved
in an elegart way by adding a non{consenative damping term to the electronic
Car{P arrinello equation of motion Eq. (45)

i %) = sh ojHe] of + — fconstraintsy ¢ i i ; (61)
| |

where . 0is a friction constart that governsthe rate of energy dissipation 619;
alternativ ely, dissipation can be enforcedin a discrete fashionby reducingthe veloc-
ities by multiplying them with a constart factor < 1. Note that this deterministic
and dynamical method is very similar in spirit to simulated annealing 332 inverted
in the framework of the stochastic Monte Carlo approad in the canonicalensenble.
If the energydissipation is done slowly, the wavefunction will nd its way down to
the minimum of the energy At the end, an intricate global optimization hasbeen
performed!

If the nuclei are allowed to move accordingto Eg. (44) in the presenceof an-
other damping term a combined or simultaneous optimization of both electrons
and nuclei can be achieved, which amournts to a \global geometry optimization".
This perspective is stressedin more detail in the review Ref. 223 and an imple-
mentation of sud ideaswithin the CADPAQuantum chemistry code is descrilbed in
Ref. 692, This operational mode of Car{P arrinello molecular dynamicsis related to
other optimization techniqueswhereit is aimedto optimize simultaneously both the
structure of the nuclear skeleton and the electronic structure. This is achieved by
consideringthe nuclear coordinates and the expansioncoe cien ts of the orbitals as
variation parameterson the samefooting 4°:2°%:698 Byt Car{P arrinello molecular
dynamicsis more than that becauseeven if the nuclei cortin uously move according
to Newtonian dynamics at nite temperature an initially optimized wavefunction
will stay optimal along the nuclear trajectory.

2.4.7 The Extendal Lagrangian Viewpoint

There is still another way to look at the Car{Parrinello method, namely in the

light of so{called \extended Lagrangians" or \extended system dynamics" 4, see
e.g. Refs, 136:12:270:585:217 for intro ductions. The basicideais to couple additional

degreesof freedomto the Lagrangian of interest, thereby \extending" it by increas-
ing the dimensionality of phasespace. These degreesof freedom are treated like
classicalparticle coordinates, i.e. they are in general characterized by \p ositions",

\momenta", \masses", \in teractions" and a \coupling term" to the particle's po-
sitions and momenta. In order to distinguish them from the physical degreesof
freedom, they are often called \ ctitious degreesof freedom".
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The correspnding equations of motion follow from the Euler{Lagrange equa-
tions and yield a microcanonical ensenble in the extended phasespacewhere the
Hamiltonian of the extended system is strictly consened. In other words, the
Hamiltonian of the physical (sub{) systemis no more (strictly) consened, and the
produced ensenble is no more the microcanonical one. Any extended system dy-
namicsis constructed suc that time{averagegakenin that part of phasespacethat
is ass@iated to the physical degreesof freedom (obtained from a partial trace over
the ctitious degreesof freedom) are physically meaningful. Of course,dynamics
and thermodynamics of the systemare a ected by adding ctitious degreesof free-
dom, the classicexamplesbeing temperature and pressurecorrol by thermostats
and barostats, seeSect. 4.2.

In the caseof Car{Parrinello molecular dynamics, the basic Lagrangian for
Newtonian dynamics of the nuclei is actually extended by classical elds f (r)g,
i.e. functions instead of coordinates, which represen the quantum wavefunction.
Thus, vector products or absolute valueshave to be generalizedto scalar products
and norms of the elds. In addition, the \p ositions" of these elds f ;g actually
have a physical meaning, cortrary to their momerta f _g.

2.5 What alout Hellmann{Feynman Forces ?

An important ingrediernt in all dynamics methods is the e cien t calculation of the
forces acting on the nuclei, seeEgs. (30), (32), and (44). The straightforward
numerical evaluation of the derivative

F| =T |h OjHej Oi (62)

in terms of a nite{di erence approximation of the total electronic energyis both
too costly and too inaccurate for dynamical simulations. What happensif the gra-
dients are evaluated analytically? In addition to the derivative of the Hamiltonian
itself

rih ojHe of = h ojr |Hej ol
+ hr | OjHej ol + h OjHejI' | ol (63)

there are in generalalsocortributions from variations of the wavefunction r | o.
In generalmeansherethat thesecortributions vanish exactly

FIFT = h ojr 1He ol (64)

if the wavefunction is an exact eigenfunction (or stationary state wavefunction) of
the particular Hamiltonian under consideration. This is the content of the often{
cited Hellmann{Feynman Theorem 295:186:368 "\which is also valid for many varia-
tional wavefunctions (e.g. the Hartree{Fock wavefunction) provided that complete
basis setsare used. If this is not the case,which hasto be assumedfor numerical
calculations, the additional terms have to be evaluated explicitly .

In order to proceeda Slater determinant o = detf ;g of one{particle orbitals

i» which themselesare expanded

X
i = g f (r;fRiQ) (65)
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in terms of a linear combination of basisfunctions ff g, is usedin conjunction with
an e ectiv e one{particle Hamiltonian (such ase.g. in Hartree{Fock or Kohn{Sham
theories). The basisfunctions might depend explicitly on the nuclear positions (in
the caseof basisfunctions with origin sud as atom{centered orbitals), whereasthe
expansioncoe cien ts always carry an implicit dependence. This meansthat from
the outset two sorts of forcesare expected

X X
roi= (ma)f (GfRig+ o (raf (rfRig) (66)

in addition to the Hellmann{Feynman force Eq. (64).

Using sud a linear expansionEq. (65), the force cortributions stemming from
the nuclear gradients of the wavefunction in Eq. (63) can be disertangled into two
terms. The rst oneis called\incomplete{basis{set correction” (IBS) in solid state
theory 49:591:180 and correspndsto the \w avefunction force" 4% or \Pulay force" in
quantum chemistry 494:4% |t cortains the nuclear gradierts of the basisfunctions

X
FI®S = rf HESC i f o+ f HESC (67)
i
and the (in practice non{self{consistert) e ective one{particle Hamiltonian 4959,

The secondterm leadsto the so{called \non{self{consistency correction" (NSC) of
the force 49:°91 .

FNSC = dr (r n) VSCF yNSC (68)

and is governedby the di erence betweenthe self{consistern (\exact”) potential or
eld VSCF and its non{self{consistert (or approximate) courterpart VNS¢ assai-
ated to HNSC; n(r) is the charge density. In summary, the total force neededin ab
initio molecular dynamics simulations

Fi = FIFT + F[BS + pNSC (69)

comprisesin general three qualitativ ely di erent terms; seethe tutorial article
Ref. 18 for a further discussionof corevs. valencestatesand the e ect of pseudom-
tentials. Assuming that self{consistencyis exactly satis ed (which is never going
to be the casein numerical calculations), the force FNS¢ vanishesand HSCF hasto
be usedto evaluate FIBS. The Pulay cortribution vanishesin the limit of using a
complete basisset (which is alsonot possibleto achieve in actual calculations).
The most obvious simpli cation arisesif the wavefunction is expandedin terms
of originlessbasisfunctions suc asplane waves,seeEg. (100). In this casethe Pu-
lay forcevanishesexactly, which appliesof courseto all abinitio moleculardynamics
sthemes(i.e. Ehrenfest, Born{Opp enheimer, and Car{P arrinello) using that par-
ticular basisset. This statemert is true for calculations wherethe number of plane
wavesis xed. If the number of plane waveschanges,suc asin (constant pressure)
calculations with varying cell volume / shape where the energy cuto is strictly
xed instead, Pulay stresscortributions crop up 219:245:660:211:202 " geeSect. 4.2. If
basissetswith origin are usedinstead of plane wavesPulay forcesarise always and
have to be included explicitely in force calculations, seee.g. Refs. 37037 for such
methods. Another interesting simpli cation of the sameorigin is noted in passing:
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there is no basisset superposition error (BSSE) & in plane wave{basedelectronic
structure calculations.

A non{obvious and more delicate term in the context of ab initio molecular
dynamicsis the one stemming from non{self{consistency Eq. (68). This term van-
ishesonly if the wavefunction ¢ is an eigenfunction of the Hamiltonian within the
subspce spanned by the nite basissetuseal. This demandslessthan the Hellmann{
Feynman theorem where ( hasto be an exact eigenfunction of the Hamiltonian
and a complete basis set hasto be usedin turn. In terms of electronic structure
calculations complete self{consistency(within a given incomplete basis set) has to
be reached in order that FNSC vanishes. Thus, in numerical calculations the NSC
term can be made arbitrarily small by optimizing the e ective Hamiltonian and by
determining its eigenfunctionsto very high accuracy but it can never be suppressed
completely.

The crucial point is, howewer, that in Car{Parrinello as well as in Ehrenfest
molecular dynamics it is not the minimized expectation value of the electronic
Hamiltonian, i.e. min ,fh ojH¢ oig, that yields the consistent forces. What is
merely neededis to evaluate the expressionh ojHe oi with the Hamiltonian and
the asseiated wavefunction available at a certain time step, compare Eqg. (32) to
Eq. (44) or (30). In other words, it is not required (concerningthe preser discussion
of the cortributions to the force!) that the expectation value of the electronic
Hamiltonian is actually completely minimized for the nuclear con guration at that
time step. Whence, full self{consistencyis not required for this purposein the case
of Car{P arrinello (and Ehrenfest) molecular dynamics. As a consequencethe non{
self{consistencycorrection to the force F NS¢ Eq. (68) is irrelevant in Car{P arrinello
(and Ehrenfest) simulations.

In Born{Opp enheimermolecular dynamics, on the other hand, the expectation
value of the Hamiltonian hasto be minimized for ead nuclear con guration before
taking the gradient to obtain the consistent force! In this sdheme there is (inde-
pendenly from the issueof Pulay forces)alwaysthe non{vanishing cortribution of
the non{self{consistency force, which is unknown by its very de nition (if it were
know, the problem was solved, seeEq. (68)). It is noted in passingthat there are
estimation schemesavailable that correct approximately for this systematic error in
Born{Opp enheimerdynamicsand leadto signi cant time{savings, seee.g. Ref. 344,

Heuristically onecould alsoarguethat within Car{P arrinello dynamicsthe non{
vanishing non{self{consistency force is kept under cortrol or courterbalanced by
the non{vanishing \mass times accelerationterm™ ; *;(t) 0, which is small but
not identical to zeroand oscillatory. This is su cien t to keepthe propagation sta-
ble, whereas ; *i(t) 0, i.e. an extremelytight minimization min ,fh ojHej oig,
is required by its very de nition in order to make the Born{Opp enheimerapproac
stable, compare again Eq. (60) to Eqg. (40). Thus, also from this perspective it
becomesclear that the ctitious kinetic energy of the electronsand thus their cti-
tious temperature is a measurefor the departure from the exact Born{Opp enheimer
surfaceduring Car{P arrinello dynamics.

Finally, the presen discussionshavsthat nowherein theseforce derivations was
made use of the Hellmann{Feynman theorem as is sometimesstated. Actually, it
is known for a long time that this theorem is quite uselessfor numerical electronic
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structure calculations, seee.g. Refs. 494:49:4% gnd referencestherein. Rather it
turns out that in the caseof Car{P arrinello calculations using a plane wave basis
the resulting relation for the force, namely Eq. (64), looks like the one obtained by
simply invoking the Hellmann{Feynmantheorem at the outset.

It is interesting to recall that the Hellmann{Feynman theorem as applied to a
non{eigenfunction of a Hamiltonian yields only a rst{order perturbativ e estimate
of the exact force 2°5:368, The sameargumert applies to ab initio molecular dy-
namics calculations where possibleforce correctionsaccordingto Egs. (67) and (68)
are neglectedwithout justi cation. Furthermore, such simulations can of coursenot
strictly consene the total Hamiltonian E¢ons EQ. (48). Finally, it shouldbe stressed
that possiblecortributions to the forcein the nuclear equation of motion Eq. (44)
due to position{dependent wavefunction constraints have to be evaluated following
the sameprocedure. This leadsto similar \correction terms" to the force, seee.g.
Ref. 35 for suc a case.

2.6 Which Method to Choose?

Presumablythe mostimportant questionfor practical applicationsis which abinitio
molecular dynamics method is the most e cien t in terms of computer time givena
speci ¢ problem. An a priori advantage of both the Ehrenfest and Car{P arrinello
schemes over Born{Opp enheimer molecular dynamics is that no diagonalization
of the Hamiltonian (or the equivalent minimization of an energy functional) is
necessary except at the very rst step in order to obtain the initial wavefunc-
tion. The dierence is, howewer, that the Ehrenfest time{evolution according to

the time{dependen Scredinger equation Eq. (26) conformsto a unitary propaga-
tion 341,366,342

(to+ t) = exp[ iHe(to) t=1]( to) (70)
(to+tm t) = exp[ iHe(to+ (m 1) t) t=]
exp[ iHe(to+ 2 t) t=]
exp[ iHe(to+ t) t=]
expl iHe(to) t=1( tg) 71
(to+t™) L 0Tep L tOHdtHe(t) ( to) (72)

to

for in nitesimally short times given by the time step t = t™®=m; hereT is the
time{ordering operator and H(t) is the Hamiltonian (which is implicitly time{
dependert via the positions f R (t)g) evaluated at time t using e.g. split operator
techniques 183, Thus, the wavefunction  will consere its norm and in particular
orbitals usedto expandit will stay orthonormal, seee.g. Ref. 617, In Car{P arrinello
molecular dynamics, on the cortrary, the orthonormality hasto be imposedbrute
force by Lagrange multipliers, which amounts to an additional orthogonalization
at ead molecular dynamics step. If this is not properly done, the orbitals will
becomenon{orthogonal and the wavefunction unnormalized, seee.g. Sect.111.C.1
in Ref. 472,
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But this theoretical disadvantage of Car{P arrinello vs. Ehrenfest dynamics is
in reality more than compensatedby the possibility to usea much larger time step
in order to propagate the electronic (and thus nuclear) degreesof freedomin the
former scheme. In both approadies,there is the time scaleinherert to the nuclear
motion , and the one stemming from the electronic dynamics .. The rst one
can be estimated by consideringthe highest phonon or vibrational frequencyand
amounts to the order of , 10 % s (or 0.01 ps or 10 fs, assuminga maximum
frequency of about 4000cm ). This time scaledependsonly on the physicsof the
problem under considerationand yields an upper limit for the timestep t™® that
can be usedin order to integrate the equations of motion, e.g. t™® n=10.

The fasted electronic motion in Ehrenfest dynamics can be estimated within a
plane wave expansionby ! £ E.y, where E.y is the maximum kinetic energy
included in the expansion. A realistic estimate for reasonablebasis setsis £
10 1€ s, which leadsto £ n=100. The analoguesrelation for Car{P arrinello
dynamics reads however ! SP (Eq = )12 according to the analysisin Sect. 2.4,
seeEq. (54). Thus, in addition to reducing! $P by introducinga nite electronmass

, the maximum electronic frequencyincreasesmuch more slowly in Car{P arrinello
than in Ehrenfest molecular dynamics with increasing basisset size. An estimate
for the samebasisset and a typical ctitious massyields about £° 10 *® sor

&p »=10. According to this simple estimate, the time step can be about one
order of magnitude larger if Car{P arrinello second{order ctitious{time electron
dynamics is usedinstead of Ehrenfest rst{order real{time electron dynamics.

The time scale and thus time step problem inherert to Ehrenfest dynamics
prompted some attempts to releave it. In Ref. %3 the equations of motion of
electronsand nuclei were integrated using two di erent time steps, the one of the
nuclei being 20{times as large as the electronic one. The powerful technology
of multiple{time step integration theory 636:63° could also be applied in order to
ameliorate the time scaledisparity °%°. A di erent approac borrowed from plasma
simulations consistsin decreasingthe nuclear massesso that their time ewlution
is arti cially speededup ®'7. As a result, the nuclear dynamicsis ctitious (in the
presenceof real{time electron dynamics!) and hasto be rescaledto the proper mass
ratio after the simulation.

In both Ehrenfest and Car{P arrinello schemesthe explicitly treated electron
dynamics limits the largesttime stepthat can be usedin order to integrate simul-
taneously the coupled equationsof motion for nuclei and electrons. This limitation
does of coursenot exist in Born{Opp enheimer dynamics sincethere is no explicit
electron dynamics so that the maximum time step is simply given by the onein-
trinsic to nuclear motion, i.e. 5° n. This is formally an order of magnitude
advantage with respect to Car{P arrinello dynamics.

Do thesebad{of{the{en velope estimateshave anything to do with reality? For-
tunately, seweral state{of{the{art studies are reported in the literature for physi-
cally similar systemswhere all three molecular dynamics schemeshave been em-
ployed. Ehrenfest simulations 553292 of a dilute Ky (KCl); x melt were performed
using a time step of 0.012{0.024fs. In comparison, a time step as large as 0.4 fs
could be usedto produce a stable Car{P arrinello simulation of electronsin lig-
uid ammonia %5:1%6_ Since the physics of these systemshas a similar nature |
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\un bound electrons" dissolved in liquid condensedmatter (localizing as F {centers,
polarons, bipolarons, etc.) | the time step di erence of about a factor of ten con-
rms the crude estimate given above. In a Born{Opp enheimer simulation 5% of
againK, (KCl); x but up to a higher concertration of unbound electronsthe time
step usedwas 0.5 fs.

The time{scale advantage of Born{Opp enheimervs. Car{P arrinello dynamics
becomeamore evidert if the nuclear dynamics becomedairly slow, sud asin liquid
sadium 3*3 or selenium 33! where a time step of 3 fs was used. This establishes
the above{mentioned order of magnitude advantage of Born{Opp enheimervs. Car{
Parrinello dynamicsin advantageouscases.Howewer, it hasto betakeninto accoun
that in simulations 33! with suc a large time step dynamical information is limited
to about 10 THz, which correspnds to frequenciesbelow roughly 500cm 1. In
order to resole vibrations in molecular systemswith sti covalent bondsthe time
step hasto be decreasedo lessthan a femtosecond(seethe estimate given above)
alsoin Born{Opp enheimerdynamics.

The comparison of the overall performance of Car{Parrinello and Born{
Oppenheimer molecular dynamics in terms of computer time is a delicate issue.
For instance it depends crucially on the choice made concerning the accuracy of
the consenation of the energy E.ons as de ned in Eq. (48). Thus, this issueis to
some extend subject of \p ersonal taste” as to what is consideredto be a \suf-
ciently accurate" energy consenation. In addition, this comparison might to
di erent conclusionsas a function of system size. In order to newerthelessshed
light on this point, microcanonical simulations of 8 silicon atoms were performed
with various parameters using Car{P arrinello and Born{Opp enheimer molecular
dynamics as implemerted in the CPMIpackage '#?. This large{gap system was
initially extremely well equilibrated and the runs were extended to 8 ps (and a
few to 12 ps with no noticeable di erence) at a temperature of about 360{370 K
(with 80K root{mean{square uctuations). The wavefunction was expandedup
to Ect = 10 Ry at the {p oint of a simple cubic supercell and LDA was used
to descrike the interactions. In both casesthe velocity Verlet sheme was usedto
integrate the equationsof motion, seeEqgs. (231). It is noted in passingthat also
the velocity Verlet algorithm 638 allows for stable integration of the equations of
motion cortrary to the statemerts in Ref. 513 (seeSect. 3.4 and Figs. 4{5).

In Car{P arrinello molecular dynamicstwo di erent time stepswereused,5 a.u.
and 10a.u. (corresponding to about 0.24fs), in conjunction with a ctitious electron
massof = 400 a.u.; this mass parameter is certainly not optimized and thus
the time step could be increasedfurthermore. Also the largest time step lead to
perfect adiabaticity (similar to the one documerted in Fig. 3), i.e. Epnys EQ. (49)
and Te Eqg. (51) did not showv a systematic drift relative to the energy scale set
by the variations of Ve Eq. (50). Within Born{Opp enheimer molecular dynamics
the minimization of the energy functional was done using the highly e cien t DIIS
(direct inversionin the iterativ e subspace)scheme using 10 \history vectors", see
Sect. 3.6. In this case,the time step was either 10 a.u. or 100 a.u. and three
convergencectriteria were used; note that the large time step correspnding to
2.4 fs is already at the limit to be usedto investigate typical molecular systems
(with frequenciesup to 3{4000 cm 1!). The corvergencecriterion is basedon the
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Figure 5. Conserved energy Econs dened in Eq. (48) from Car{P arrinello (CP) and Born{
Oppenheimer (BO) molecular dynamics simulations of a model system for various time steps
and convergencecriteria using the CPMIpackage 142 ; seetext for further details and Table 1 for
the corresponding timings. Top: solid line: CP, 5 a.u.; open circles: CP, 10 a.u.; lled squares:
BO, 10 a.u., 10 8. Middle: open circles: CP, 10 a.u.; lled squares: BO, 10 a.u., 10 &; lled

triangles: BO, 100 a.u., 10 ©; open diamonds: BO, 100 a.u., 10 3. Bottom: open circles: CP,
10 a.u.; open diamonds: BO, 100 a.u., 10 5; dashed line: BO, 100 a.u., 10 “.

largest elemen of the wavefunction gradient which was required to be smaller than
10 6,10 5 or 10 # a.u.; note that the resulting energy cornvergenceshaws roughly
a quadratic dependenceon this criterion.

The outcomeof this comparisonis shawn in Fig. 5in terms of the time ewlution
of the consened energyE cons EQ. (48) on energyscalesthat cover more than three
orders of magnitude in absolute accuracy Within the presert comparisonultimate
energy stability was obtained using Car{P arrinello molecular dynamics with the
shortest time step of 5 a.u., which consenes the energy of the total system to
about 6 10 8 a.u. per picosecond,seesolid line in Fig. 5(top). Increasing the
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Table 1. Timings in cpu secondsand energy conservation in a.u. / psfor Car{P arrinello (CP) and
Born{Opp enheimer (BO) molecular dynamics simulations of a model system for 1 ps of tra jectory
on an IBM RS6000/ model 390 (Power2) workstation using the CPMPackage 142; seeFig. 5 for
correspondin g energy plots.

Method | Time step (a.u.) | Convergence(a.u.) | Conservation (a.u./ps) Time (s)
CcP 5 [ 6 10 © 3230
cP 7 | 1107 2310
cP 10 | 3107 1610
BO 10 10 © 110 8 16590
BO 50 10 © 110 6 4130
BO 100 10 © 6 10 2250
BO 100 10 5 110 5 1660
BO 100 10 4 110 8 1060

time step to 10 a.u. leadsto an energy consenation of about 3 10 7 a.u./ps and
much larger energy uctuations, seeopen circlesin Fig. 5(top). The computer time
neededin order to generateone picosecondof Car{P arrinello trajectory increases
to a good approximation { linearly with the increasingtime step, seeTable 1. The
most stable Born{Opp enheimerrun wasperformedwith atime stepof 10a.u. anda
corvergenceof 10 8. This leadsto an energyconsenation of about 1 10 6 a.u./ps,
see lled squaresin Fig. 5(top).

As the maximum time step in Born{Opp enheimer dynamics is only related
to the time scale ass@iated to nuclear motion it could be increasedfrom 10 to
100 a.u. while keeping the corvergenceat the sametight limit of 10 6. This
worsensthe energy consenation slightly (to about 6 10 © a.u./ps), whereasthe
energy uctuations increasedramatically, see lled triangles in Fig. 5(middle) and
note the changeof scalecomparedto Fig. 5(top). The overall gain is an acceleration
of the Born{Opp enheimersimulation by afactor of about sevento eight, seeTable1.
In the Born{Opp enheimersdieme,the computer time neededfor a xed amourt of
simulated physical time decreasenly sublinearly with increasingtime step since
the initial guesdor the iterative minimization degradesn quality asthe time stepis
madelarger. Further savings of computer time can be easily achieved by decreasing
the quality of the wavefunction corvergencefrom 10 ©to 10 ° and nally to 10 4,
seeTable 1. This is unfortunately tied to a signi cant decreaseof the energy
consenation from 6 10 ®a.u./ps at 10 © (lled triangles) to about 1 10 3 a.u./ps
at 10 4 (dashedline) using the same 100 a.u. time step, seeFig. 5(bottom) but
note the change of scalecomparedto Fig. 5(middle).

In conclusion, Born{Opp enheimer molecular dynamics can be made as fast
as (or even faster than) Car{P arrinello molecular dynamics (as measuredby the
amourt of cpu time spernt per picosecond)at the expenseof sacri cing accuracy
in terms of energyconsenation. In the \classical molecular dynamics community"
there is a general consensughat this consenration law should be taken seriously
being a measureof the numerical quality of the simulation. In the \quantum chem-
istry and total energycommunities” this issueis typically of lessconcern. There, it
is rather the quality of the corvergenceof the wavefunction or energy (as achieved
in every individual molecular dynamics step) that is believed to be crucial in order
to gaugethe quality of a particular simulation.
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Finally, it is worth commerting in this particular section on a paper ertitled

\A comparisonof Car{P arrinello and Born{Opp enheimergeneralizedvalencebond
molecular dynamics" 22°. In this paper one (computationally expensiwe) term in
the nuclear equations of motion is neglected 648:4%5, |t is well known that using
a basis set with origin, sud as Gaussiansf ¢ (r;fR, g) certered at the nuclei, see
Eqg. (99), producesvarious Pulay forces,seeSect.2.5. In particular a linear expan-
sion Eq. (65) or (97) basedon sud orbitals introducesa position dependenceinto
the orthogonality constraint

h-'-i:X o fC G = (73)

il j G G | —{z—} i

S

that is hidden in the overlap matrix S (f R, g) which involvesthe basisfunctions.
According to Eq. (44) this term producesa constraint force of the type
X X
T 6 oS (Rig 74)
j

in the correct Car{P arrinello equation of motion for the nuclei similar to the one
cortained in the electronic equation of motion Eq. (45). This term has to be
included in order to yield exact Car{P arrinello trajectories and thus energy con-
senation, seee.g. Eq. (37) in Ref. 3! for a similar situation. In the caseof Born{
Oppenheimermoleculardynamics, on the contrary, this term is always absen in the
nuclear equation of motion, seeEq. (32). Thus, the particular implementation 22°
underlying the comparisonbetweenCar{P arrinello and Born{Opp enheimermolec-
ular dynamicsis an approximate onefrom the outset concerningthe Car{P arrinello
part; it can be arguedthat this wasjusti ed in the early papers 281282 where the
basicfeasibility of both the Hartree Fock{ and generalizedvalencebond{basedCar{
Parrinello molecular dynamicstechniqueswasdemonstrated 2%, Most importantly,
this approximation implies that the energyE cons EQ. (48) cannot be rigorously con-
servel in this particular version of Car{P arrinello molecular dynamics. Howeer,
energyconsenation of E .ons wasusedin Ref. 22° to comparethe e ciency and accu-
racy of thesetwo approadesto GVB ab initio molecular dynamics (using DI IS for
the Born{Opp enheimersimulations asdonein the above{given comparison). Thus,
the nal conclusionthat for \::: approacesthat utilize non{space{ xed basesto
descrike the electronic wave function, Born{Opp enheimer AIMD is the method of
choice, both in terms of accuracyand speed" ??° cannot be drawn from this speci ¢
comparison for the reasonsoutlined above (independertly of the particular basis
set or electronic structure method used).

The toy systeminvestigatedhere (seeFig. 5 and Table 1), i.e. 8 silicon atomsin
a periodic supercell, is for the purposeof comparingdi erent approadesto abinitio
moleculardynamics quite similar to the systemusedin Ref. ??°, i.e. clustersof 4 or 6
sodium atoms (in addition, qualitativ ely identical results wherereported in Sect. 4
for silicon clusters). Thus, it is admissibleto compare the energy consenations
reported in Figs. 1 and 2 of Ref. 22 to the onesdepicted here in Fig. 5 noting
that the longest simulations reported in Ref. 2° reached only 1 ps. It should be
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stressedthat the energy consenation seenin Fig. 5(top) is routinely achieved in
Car{P arrinello molecular dynamics simulations.

2.7 Electronic Structure Methods
2.7.1 Intr oduction

Up to this point, the electronic structure method to calculate the ab initio forces
rh jHej i was not specied in detail. It is immediately clear that ab initio

molecular dynamics is not tied to any particular approad, although very accu-
rate techniques are of course prohibitiv ely expensive. It is also evidert that the
strength or weaknessof a particular ab initio molecular dynamics scheme is inti-

mately connectedto the strength or weaknessof the chosen electronic structure
method. Over the years a variety of di erent approades suc as density func-
tional 108;679;35;472;343;36' Hartree{Fock 365;254;191;379;281;284;316;293' generalizedva-
lencebond (GVB) 282:283:228:229:230  complete active spaceSCF (CASSCF) 566:567,
full con guration interaction (FCI) 372, semiempirical 669:671:91:%114:666:280 o gther
approximate 473:454:551:455:170:171:26 methods were combined with molecular dynam-
ics, and this list is certainly incomplete.

The focus of the presen review clearly is Car{P arrinello molecular dynamics
in conjunction with Hoherberg{Kohn{Sham density functional theory 30%:338  |n
the following, only those parts of density functional theory are preserted that im-
pact directly on ab initio molecular dynamics. For a deeper presettation and in
particular for a discussionof the assumptions and limitations of this approadc
(both conceptually and in practice) the readeris referred to the existing excellert
literature S91:320:458:168  Eor simplicity, the formulae are preserted for the spin{
unpolarized or restricted special case.

Following the exposition of density functional theory, the fundamertals of
Hartree{Fock theory, which is often consideredto be the basisof quantum chem-
istry, are introduced for the samespecial case. Finally, a glimpse is given at post
Hartree{Fock methods. Again, an extensiwe text{b ook literature exists for these
wavefunction{based approades to electronic structure calculations 04418 The
very useful connection between the density{based and wavefunction{based meth-
odsgoesbadk to Lewdin's work in the mid fties andise.g. workedout in Chapt. 2.5
of Ref. 48 where Hartree{Fock theory is formulated in density{matrix language.

2.7.2 Density Functional Theory

The total ground{state energy of the interacting system of electronswith classical
nuclei xed at positions fR g can be obtained

minfth ojHej oig = fmi_gEKS[f id]

asthe minimum of the Kohn{Sham energy 301:338
VA VA

EL gl= Tt igl+ o V() n()+ 3 dF Vu(r) (1) + Exel] 5(75)
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which is an explicit functional of the set of auxiliary functions f (r)g that sat-
isfy the orthonormality relation h ; j ji = . This is a dramatic simpli cation
sincethe minimization with respect to all possiblemany{body wavefunctionsf gis
replacedby a minimization with respect to a set of orthonormal one{particle func-
tions, the Kohn{Sham orbitals f ;g. The assaiated electronic one{body density
or charge density

XCC . .
nry= fij i(rj? (76)

is obtained from a single Slater determinant built from the occupiedorbitals, where
ffig are integer occupation numbers.

The rst term in the Kohn{Sham functional Eq. (75) is the kinetic energyof a
non{in teracting referencesystem

XCC
Ts[f gl = fi @ Zr? (77)
[
consisting of the samenumber of electronsexposedto the sameexternal potential
asin the fully interacting system. The secondterm comesfrom the xed external
potential
X Z X VARA

ext() | JRI rj o JRI RJJ ( )

in which the electrons move, which comprisesthe Coulomb interactions between
electronsand nuclei and in the de nition usedhere also the internuclear Coulomb
interactions; this term changesin the rst placeif core electrons are replaced by
pseudomtentials, seeSect. 3.1.5for further details. The third term is the Hartree
energy i.e. the classicalelectrostatic energy of two charge clouds which stem from
the electronic density and is obtained from the Hartree potential

Z

_ g0 D
Vu(r)= dr o) (79)
which in turn is related to the density via
r2Vu(r) = 4 n(r) (80)

Poisson's equation. The last cortribution in the Kohn{Sham functional, the
exdange{correlation functional Ey[n], is the most intricate cortribution to the
total electronic energy The electronic exchange and correlation e ects are lumped
together and basically de ne this functional asthe remainder between the exact
energyand its Kohn{Sham decompsition in terms of the three previous cortribu-
tions.

The minimum of the Kohn{Sham functional is obtained by varying the energy
functional Eq. (75) for a xed number of electrons with respect to the density
Eq. (76) or with respect to the orbitals subject to the orthonormality constraint,
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seee.g. the discussionfollowing Eq. (35) for a similar variational procedure. This
leadsto the Kohn{Sham equations

X
%r2+vext(r)+VH(r)+ EnXZr[;]] i(r) = | i i (r) (81)
1 X
P 2+ V() i(n = i i(r) (82)
X
HES i(r) = i j(r) (83)

j
which are one{electron equations involving an e ective one{particle Hamiltonian
HKS with the local potential VXS. Note that HXS newerthelessembodies the elec-
tronic many{body e ects by virtue of the exdhange{correlation potential

Exc[n] _
n(r)

A unitary transformation within the spaceof the occupied orbitals leadsto the
canonicalform

Vie(r) (84)

HES = (85)
of the Kohn{Sham equations,wheref ;g arethe eigervalues. In convertional static
density functional or \band structure” calculations this set of equationshasto be
solved self{consistertly in order to yield the density, the orbitals and the Kohn{
Sham potential for the electronic ground state “87. The correspnding total energy
Eqg. (75) can be written as

Z Z
X 1 Exc[n]
KS — . - + XC
E | 5 dr Vu(r) n(r) + Exc[n] dr ()
where the sum over Kohn{Sham eigervaluesis the so{called \band{structure en-
ergy".

Thus, Egs. (81){(83) together with Egs. (39){(40) de ne Born{Opp enheimer
molecular dynamics within Kohn{Sham density functional theory, see e.g.
Refs, 232:616,594;35,679;472;36;343;344 for such implementations. The functional deriva-
tive of the Kohn{Sham functional with respect to the orbitals, the Kohn{Sham
force acting on the orbitals, can be expressedas

EKS
—=fiHSS (87)

n(r) ; (86)

which makes clear the connection to Car{Parrinello molecular dynamics, see
Eq. (45). Thus, Egs. (59){(60) have to be solved with the e ective one{particle
Hamiltonian in the Kohn{Sham formulation Egs. (81){(83). In the caseof Ehren-
fest dynamics presetted in Sect. 2.2, which will not be discussedin further detalil
at this stage,the Runge{Grosstime{dependert generalizationof density functional
theory 2°8 hasto be invoked instead, seee.g. Refs. 203:617:532,

Crucial to any application of density functional theory is the approximation of
the unknown exdcange and correlation functional. A discussionfocussedon the
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utilization of sud functionals in the framework of ab initio molecular dynamics
is for instance given in Ref. %88, Those exdange{correlation functionals that will
be consideredin the implementation part, Sect. 3.3, belong to the class of the
\Generalized Gradient Approxirznation"

ExtInl= dr n(r) "Z (n(r);r n(r)) ; (88)

where the unknown functional is approximated by an integral over a function that
dependsonly on the density and its gradiert at a given point in space,seeRef. 477
and referencestherein. The combined exdciange{correlation function is typically
split up into two additiveterms "y and " for exchangeand correlation, respectively.
In the simplest caseit is the exchangeand correlation energydensity "2 A (n) of an
interacting but homogeneou®lectron gasat the density givenby the \lo cal" density
n(r) at space{mint r in the inhomogeneoussystem. This simple but astonishingly
powerful approximation 320 is the famous local density approximation LDA 338
(or local spin density LSD in the spin{polarized case“®), and a host of di erent
parameterizations exist in the literature 4°:168, The self{interaction correction #'°
SIC as applied to LDA was critically assessedor moleculesin Ref. 240 with a
disappointing outcome.

A signi cant improvemern of the accuracywas achieved by introducing the gra-
dient of the density asindicated in Eqg. (88) beyond the well{known straightforward
gradient expansions. These so{called GGAs (also denoted as\gradient corrected"
or \semilocal" functionals) extendedthe applicabilit y of density functional calcula-
tion to the realm of chemistry, seee.g. Refs, 476:42:362:477:478:479 for g few \p opular
functionals" and Refs. 318:176:577:322 for extensive tests on molecules,complexes,
and solids, respectively.

Another considerableadvancewas the successfulintroduction of \h ybrid func-
tionals" 4344 that include to someextert \exact exchange" ?*° in addition to a
standard GGA. Although sud functionals can certainly be implemented within a
plane wave approad 262:128  they are prohibitiv ely time{consuming as outlined at
the end of Sect. 3.3. A more promising route in this respect are those function-
als that include higher{order powers of the gradiernt (or the local kinetic energy
density) in the senseof a generalizedgradient expansion beyond the rst term.
Promising results could be achieved by including Laplacian or local kinetic energy
terms 493:192;194:662 bt at this stagea sound judgment concerningtheir \prize /
performanceratio” hasto await further scrutinizing tests. The \optimized poten-
tial method" (OPM) or \optimized e ectiv e potentials” (OEP) are another route
to include \exact exdange" within density functional theory, seee.g. Sect. 13.6
in Ref. 88 or Ref. 2! for overviews. Here, the exchange{correlation functional
EQPM = E,.[f ig] dependson the individual orbitals instead of only on the den-
sity or its derivatives.

2.7.3 Hartree{Fock Theory

Hartree{Fock theory is derived by invoking the variational principle in a restricted
spaceof wavefunctions. The antisymmetric ground{state electronic wavefunction
is approximated by a single Slater determinant o = detf ;g which is constructed
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from a set of one{particle spin orbitals f ;g required to be mutually orthonormal
hij ;i = 4. The correspnding variational minimum of the total electronic
energyHe de ned in Eq. (2)

z

HEGE g ? 12 .
E™[f iq] dr (r) 2r + Vexe (1) i(r)

T dr dr® 2(r) 209 —=— (1) ()
2 i 5 5 I : jrorg .

+1X dr dr® ’(r) ?(r%; TOR(&) (89)
2 ' J jrorg ! '

yields the lowest energy and the \b est" wavefunction within a one{determinant
ansatz; the external Coulomb potential Vex: was already de ned in Eq. (78). Car-
rying out the constraint minimization within this ansatz (seeEg. (36) in Sect.2.3
for a sket80h) leadsto

9
< 3 X X = X
§r2+vext(r)+ Jj(r) Kj(r). i(r)= i j(r)  (90)
j j ’ j
Leovre o= 0 @D
5 [ L
HEF i(r) = i (0 (92

j
the Hartree{Fock integro{di eren tial equations. In analogy to the Kohn{Sham
equations Egs. (81){(83) theseare e ectiv e one{particle equationsthat involve an
e ective one{particle Hamiltonian H[F, the (Hartree{) Fock operator. The set of
canonical orbitals

Hg": =0 (93)
is obtained similarly to Eq. (85). The Coulomb operator
z
1
Ji(r) i(r)= dr® f(ro)”—rq j(ro) i(r) (94)
and the exdhange operator
z
1
Ki(r) i(r)= dr® J"(rO)Jr—rq (9 (95)
are most easily de ned via their action on a particular orbital ;. It is found
that upon acting on orbital ;(r) the exchange operator for the j{th state \ex-
changes" (r9 ! i(r% in the kernel as well asreplaces (r) ! j(r) in its

argumert, compareto the Coulomb operator. Thus, K is a non{lo cal operator as
its action on a function ; at point r in spacerequiresthe evalugtion and thus the
knowledge of that function throughout all spaceby virtue of dr® (r9::: the
required integration. In this sensethe exchange operator doesnot posses& simple
classicalinterpretation like the Coulomb operator C, which is the courterpart of
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the Hartree potential Viy in Kohn{Sham theory. The exciange operator vanishes
exactly if the antisymmetrization requiremen of the wavefunction is relaxed, i.e.
only the Coulomb contribution survivesif a Hartree product is usedto represen
the wavefunction.
The force acting on the orbitals is de ned

EHF

= HEF (96)
|

similarly to Eq. (87). At this stage, the various ab initio molecular dynamics
schemesbasedon Hartree{Fock theory are de ned, seeEqgs. (39){(40) for Born{
Oppenheimer molecular dynamics and Egs. (59){(60) for Car{P arrinello molecu-
lar dynamics. In the caseof Ehrenfest molecular dynamics the time{dependen
Hartree{Fock formalism 2 hasto be invoked instead.

2.7.4 Post Hartr ee{Fock Theories

Although post Hartree{F ock methods have a very unfavorable scalingof the compu-
tational costasthe number of electronsincreasesa few casestudieswere performed
with sud correlated quantum chemistry techniques. For instance ab initio molec-
ular dynamics was combined with GVB 282:283,228,229:230  CASSCF 566567 a5 well
as FCI 372 approades, seealso referencestherein. It is noted in passingthat Car{
Parrinello molecular dynamicscan only be implemerted straightforwardly if energy
and wavefunction are \consistent". This is not the casein perturbation theories
sud as e.g. the widely used M ller{Plesset approac 2%?: within standard MP2
the energyis correct to secondorder, whereasthe wavefunction is the one given by
the uncorrelated HF reference.As a result, the derivative of the MP2 energywith
respect to the wavefunction Eq. (96) does not yield the correct force on the HF
wavefunction in the senseof ctitious dynamics. Such problems are of courseab-
sert from the Born{Opp enheimerapproac to samplecon guration space,seee.g.
Ref. 328:317:33 for MP2, density functional, and multireference Cl ab initio Monte
Carlo sthemes.

It should be kept in mind that the rapidly growing workload of post HF calcu-
lations, although extremely powerful in principle, limits the number of explicitely
treated electronsto only a few. The rapid dewelopmert of correlated electronic
structure methods that scalelinearly with the number of electronswill certainly
broadenthe range of applicability of this classof techniquesin the near future.

2.8 Basis Sets

2.8.1 Gaussiansand Slater Functions

Having selecteda specic electronic structure method the next choice is related
to which basis set to usein order to represem the orbitals ; in terms of simple
analytic functions f with well{known properties. In generala linear combination
of such basisfunctions

X
i(r)= ¢ f (r;fRyQ) (97)
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is used, which represets exactly any reasonablefunction in the limit of using a
complete set of basisfunctions. In quantum chemistry, Slater{type basisfunctions
(STOs)

fa(r)=Ng rrgvrs exp[ mirj] (98)

with an exponertially decaing radial part and Gaussian{type basis functions
(GTOs)

fa(r)=Ng vy exp  qr? (99)

have received widespreaduse, seee.g. Ref. 2% for a conciseoverview{type presen-
tation. Here, Ny, m and  are constarts that are typically kept xed during

a molecular electronic structure calculation sothat only the orbital expansionco-
ecients ¢ needto be optimized. In addition, xed linear combinations of the
above{given\primitiv e" basisfunctions can be usedfor a given angular momertum

channel m, which de nes the \contracted" basissets.

The Slater or Gaussianbasisfunctions arein generalcertered at the positions of
the nuclei,i.e. r! r R, in Eq. (98){(99), which leadsto the linear combination
of atomic orbitals (LCA O) ansatzto solve di erential equationsalgebraically. Fur-
thermore, their derivativesas well as the resulting matrix elemeris are e cien tly
obtained by di erentiation and integration in real{space. Howewer, Pulay forces
(seeSect.2.5) will result for such basisfunctions that are xed at atoms (or bonds)
if the atoms are allowed to move, either in geometry optimization or molecular
dynamics schemes. This disadvantage can be circumvernted by using freely oating
Gaussiansthat are distributed in space®®?, which form an originlessbasisset since
it is localized but not atom{ xed.

2.8.2 Plane Waves

A vastly di erent approad hasits roots in solid{state theory. Here, the ubiquitous

periodicity of the underlying lattice producesa periodic potential and thusimposes
the sameperiodicity on the density (implying Bloch's Theorem, Born{v on Karman

periodic boundary conditions etc., seee.g. Chapt. 8 in Ref. 7). This heavily

suggestgo useplane wavesasthe genericbasissetin order to expandthe periodic

part of the orbitals, seeSect. 3.1.2. Plane wavesare de ned as

fEW(r) = N exp[iGr] ; (100)

where the normalization is simply givenby N = 1:p B is the volume of the
periodic (super{) cell. Since plane wavesform a complete and orthonormal set of
functions they can be usedto expand orbitals according to Eq. (97), where the

labeling is simply givenby the vector G in reciprocal space/ G{space (including

only thoseG {v ectorsthat satisfy the particular periodic boundary conditions). The

total electronic energyis found to have a particularly simple form when expressed
in plane waves 312,

It is important to obsene that plane waves are originless functions, i.e. they

do not depend on the positions of the nuclei f R, g. This implies that the Pulay
forcesEq. (67) vanish exactly even within a nite basis(and usinga xed number
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of plane waves, seethe discussionrelated to \Pulay stress" in Sect. 2.5), which
tremendously facilitates force calculations. This also implies that plane wavesare
a very unbiasedbasissetin that they are\delocalized" in spaceand do not \fa vor"
certain atoms or regionsover others, i.e. they can be consideredas an ultimately
\balanced basis set" in the language of quantum chemistry. Thus, the only way
to improve the quality of the basisis to increasethe \energy cuto " Ecy, i.e. to
increasethe largest jGj{v ector that is included in the nite expansionEq. (97).
This blind approad is vastly di erent from the traditional proceduresin quantum
chemistry that are neededin order to produce reliable basis sets 2°2. Another
appealing feature is that derivativesin real{spaceare simply multiplications in G{
space,and both spacescan be e cien tly connectedvia Fast Fourier Transforms
(FFTs). Thus, one can easily evaluate operators in that spacein which they are
diagonal, seefor instancethe o w charts in Fig. 6 or Fig. 7.

According to the wel{known \No Free Lunch Theorem" there cannot be only
advantagesconnectedto using planewaves. The rst point is that the pseudomten-
tial approximation is intimately connectedto using plane waves,why so? A plane
wave basisis basically a lattice{symmetry{adapted three{dimensional Fourier de-
composition of the orbitals. This meansthat increasinglylarge Fourier componerts
are neededin order to resole structures in real spaceon decreasinglysmall distance
scales.But already orbitals of rst row atoms feature quite strong and rapid oscilla-
tions closeto the nuclei dueto the Pauli principle, which enforcesa nodal structure
onto the wavefunction by imposing orthogonality of the orbitals. Howewer, most
of chemistry is ruled by the valenceelectrons, whereasthe core electrons are es-
sertially inert. In practice, this meansthat the innermost electronscan be taken
out of explicit calculations. Instead they are represeted by a smooth and nodeless
e ectiv e potential, the so{called pseudoptential 296:297:484:485:139 ' seefor instance
Refs.487:578:221 for reviewsin the cortext of \solid state theory" and Refs.14%:166 for
pseudomtentials asusedin \quantum chemistry”. The resulting pseudowavefunc-
tion is made assmooth aspossiblecloseto the nuclear coreregion. This alsomeans
that properties that depend crucially on the wavefunction closeto the core cannot
be obtained straightforwardly from sud calculations. In the eld of plane wave
calculations the introduction of \soft" norm{conserving ab initio pseudoptentials
was a breakthrough both conceptually 2’4 and in practice 2. Another important
cortribution, especially for transition metals, wasthe introduction of the so{called
ultrasoft pseudomtentials by Vanderbilt 661, This approadceslead to the power-
ful technique of plane wave{pseudoptential electronic structure calculationsin the
framework of density functional theory 312487 Within this particular framework
the issueof pseudomtentials is elaborated in more detail in Sect.3.1.5.

Another seere shortcoming of plane wavesis the badside of the medal of being
an unbiasedbasisset: there is no way to shu e more basisfunctions into regionsin
spacewherethey are more neededthan in other regions. This is particularly bad for
systemswith strong inhomogeneities. Such examplesare all{electron calculations
or the inclusion of semi{core states, a few heavy atomsin a seaof light atoms, and
(semi{) nite systemssud as surfacesor moleculeswith a large vacuum region in
order to allow the long{range Coulomb interactions to deca. This is often referred
to asthe multiple length scalede ciency of plane wave calculations.
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2.8.3 Genenmnlized Plane Waves

An extremely appealing and elegarn generalizationof the plane wave concept 263:264
consistsin de ning them in curved {space

fSPW () = Ndet'™2J exp[iG r( )] (101)

_ @ |

detJ = @ X
where detJ is the Jacobian of the transformation from IQgrtesian to curvilinear
coordinatesr ! (r) with = (% 2 3 and N = 1=  as for regular plane

waves. These functions are orthonormal, form a complete basis set, can be used
for k{p oint sampling after replacing G by G + k in Eqg. (101), are originless (but
newerthelesslocalized) so that Pulay forces are absert, can be manipulated via
e cient FFT techniques,and reduceto standard plane wavesin the special caseof
an Euclidean space (r) = r. Thus, they can be usedequally well like plane waves
in linear expansionsof the sort Eq. (65) underlying most of electronic structure
calculations. The Jacobian of the transformation is related to the Riemannian
metric tensor

X @@
Gj = -
oy @ @

detd = det *?fg;g (102)

which de nes the metric of the {space. The metric and thus the curvilinear co-
ordinate systemitself is consideredas a variational parameter in the original fully
adaptive{coordinate approad 23264 seealso Refs, 159:275:276:277:278 ' Thys, a uni-
form grid in curved Riemannian spaceis non{uniform or distorted when viewed in
at Euclidean space(where g; = j ) sud that the density of grid points (or the
\lo cal" cuto energyof the expansionin terms of G{v ectors) is highestin regions
closeto the nuclei and lowest in vacuum regions,seeFig. 2 in Ref. 27,
Concerning actual calculations, this meansthat a lower number of generalized
plane wavesthan standard plane wavesare neededin order to achieve a given ac-
curacy %53, seeFig. 1 in Ref. 2’>. This allows even for all{electron approadesto
electronic structure calculations where plane wavesfail 431497, More recertly, the
distortion of the metric was frozen spherically around atoms by intro ducing defor-
mation functions 26°:266 which leadsto a conceptcloselyconnectedto non{uniform
atom{centered meshesin real{space methods 43!, seebelow. In sud non{fully{
adaptive approadies using prede ned coordinate transformations attention has to
be givento Pulay force cortributions which have to be evaluated explicitely 265:431,

2.8.4 Wavelets

Similar to using generalized plane waves is the idea to exploit the powerful
multiscale{properties of wavelets. Since this approad requires an extensiwe in-
troductory discussion(seee.g. Ref. 242 for a gertle introduction) and sinceit seems
still quite far from being usedin large{scale electronic structure calculations the
interested reader is referred to original papers 134:674:699,652;241,25 gnd the general
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wavelet literature cited therein. Wavelet{based methods allow intrinsically to ex-
ploit multiple length scaleswithout introducing Pulay forcesand can be e cien tly
handled by fast wavelet transforms. In addition, they are also a powerful route to
linear scaling or \order{ N" methods #°3243 as rst demonstratedin Ref. 241 with
the calculation of the Hartree potential for an al{electron uranium dimer.

2.8.5 Mixed and Augmentel Basis Sets

Localized Gaussianbasisfunctions on the one hand and plane waveson the other
hand are certainly two extreme cases. There has been a tremendous e ort to
combine sud localizedand originlessbasisfunctions in order to exploit their mutual
strengths. This resulted in a rich collection of mixed and augmerted basis sets
with very speci ¢ implementation requiremerts. This topic will not be covered
here and the interested reader is referred to Refs, 75:654:498:370:371 gnd references
given therein for somerecen implementations usedin conjunction with ab initio
molecular dynamics.

2.8.6 Wannier Functions

An alternativ e to the plane wave basissetin the framework of periodic calculations
in solid{state theory are Wannier functions, seefor instance Sect. 10 in Ref. %7.
Thesefunctions are formally obtained from a unitary transformation of the Bloch
orbitals Eg. (114) and have the advantage that they can be exponertially localized
under certain circumstances. The so{called maximally localized generalizedWan-
nier functions 413 are the periodic analoguesof Boys' localized orbitals de ned for
isolated systems. Recertly the usefulnessof Wannier functions for numerical pur-
poseswas advocated by seweral groups, seeRefs. 339:184:413:10 and referencesgiven
therein.

2.8.7 Real Spce Grids

A quite di erent approad is to leave corvertional basisset approadesaltogether
and to resort to real{spacemethods wherecontin uousspaceis replacedby a discrete
spacer ! rp. This ertails that the derivative operator or the ertire energy ex-
pressionhasto bediscretizedin someway. The high{order certral{ nite di erence
approad leadsto the expression

1 hi 1 P
2" 2 (0 "= 2 ne= n Cne (g, * Nihirp,irp,)
P N
+ = NGy (Mt t nyh?rpz)#
P
+ N NCn, i(rpiTp,ifp, + nzh) + O h2N*2 (103)

for the Laplacian which is correct up to the order h®N*2 . Here, h is the uniform
grid spacingand f C g are known expansioncoe cien ts that depend on the selected
order 130, Within this sdheme, not only the grid spacingh but also the order are
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disposableparametersthat can be optimized for a particular calculation. Note that
the discretization points in cortin uous spacecan also be consideredto constitute a
sort of \ nite basisset” { despite di erent statemerts in the literature { and that
the \in nite basisset limit" isreadiedash ! 0 for N xed. A variation on the
theme are Mehrstellen shemeswhere the discretization of the ertire di erential
equation and not only of the derivative operator is optimized &°.

The rst real{spaceapproac devisedfor abinitio moleculardynamicswasbased
on the lowest{order nite{di erence approximation in conjunction with a equally{
spacedcubic meshin real space!®. A variety of other implementations of more
sophisticated real{space methods followed and include e.g. non{uniform meshes,
multigrid acceleration,di erent discretization techniques,and nite{element meth-
ods 686:61;39:130,131:632,633;431,634  Among the chief advantages of the real{space
methods is that linear scaling approaces #°3:243 can be implemented in a natural
way and that the multiple{length scaleproblem canbe coped with by adapting the
grid. However, the extensionto sud non{uniform meshesinducesthe (in)famous
Pulay forces(seeSect. 2.5) if the mesh movesasthe nuclei move.

3 Basic Techniques: Implemen tation within the CPMZode

3.1 Intr oduction and Basic De nitions

This sectiondiscusseshe implementation of the planewave{pseudomtential molec-
ular dynamics method within the CPMRomputer code 142, It concertrates on the
basicsleaving advancedmethods to later chapters. In addition all formulas are for
the non-spin polarized case. This allows to shav the essetial features of a plane
wave code as well as the reasonsfor its high performancein detail. The imple-
mertation of other versionsof the preserted algorithms and of the more advanced
techniquesin Sect.4 is in most casesvery similar.

There are many reviewson the pseudoptential plane wave method aloneor in
connectionwith the Car{P arrinello algorithm. Older articles 312:157:487:591 a5 well
as the book by Singh 578 concertrate on the electronic structure part. Other re-
views 513:472:223:224 nresen the plane wave method in connectionwith the molecular
dynamics technique.

3.1.1 Unit Cell and Plane Wave Basis

The unit cell of a periodically repeated system is de ned by the Bravais lattice
vectorsas, az, and as. The Bravais vectors can be combined into a three by three
matrix h = [a;; ay; az] **°. The volume ofthe cellis calculated asthe determinant
of h

= deth : (104)
Further, scaledcoordinates s are introducedthat are related to r via h

r=nhs: (105)
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Distancesin scaledcoordinates are related to distancesin real coordinates by the
metric tensor G= hth

(ri r)?=(s s)Gs s): (106)
Periodic boundary conditions can be enforcedby using
foc =1 hh'r o (107)

where[ ]Jnint denotesthe nearestinteger value. The coordinates rp,c will be
always within the box certered around the origin of the coordinate system. Recip-
rocal lattice vectorsb; are de ned as

bi a = 2 ij (108)
and can also be arrangedto a three by three matrix
[by;bs;ba]= 2 (ht) (109)

Plane waves build a complete and orthonormal basis with the above periodicity
(seealso the section on plane wavesin Sect. 2.8)

F(r) = p=explG 1= p—expl2 ig § ; (110)

with the reciprocal spacevectors
G=2(h") g; (111)

whereg = [i; j; k] is a triple of integervalues. A periodic function can be expanded
in this basis

X
= +L)=p=" (G)explG r] ; (112)
G

where (r) and (G) are related by a three-dimensional Fourier transform. The
direct lattice vectorsL connectequivalent points in dierent cells.
3.1.2 Plane Wave Expansions

The Kohn{Sham potential (seeEq. (82)) of a periodic system exhibits the same
periodicity asthe direct lattice

V()= v +L) ; (113)
and the Kohn{Sham orbitals can be written in Bloch form (seee.g. Ref. 27)
(r)= i(r;k)=-explik r] ui(r;Kk) ; (114)

where k is a vector in the rst Brillouin zone. The functions u;(r; k) have the
periodicity of the direct lattice

ui(r;k) = ui(r + L;k) : (115)
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The index i runs over all states and the states have an occupation f; (k) assaiated
with them. The periodic functions u;(r; k) are now expandedin the plane wave
basis

X
ui(r; k) = pl: G(G;k)expliG r] ; (116)
G

and the Kohn{Sham orbitals are

X
i(r;k) = pl: G(G;k)expli(G + k) r] ; (117)
G
where ¢; (G; k) are complex numbers. With this expansionthe density can also be
expandedinto a plane wave basis
1X X
— dk fi(k) ¢ (G%K)G (G; k) expli(G + k) r] (118)
i G;Go
n(G)expi G r] ; (119)
G

n(r)

where the sum over G vectorsin Eg. (119) expandsover double the range given
by the wavefunction expansion. This is one of the main advantages of the plane
wave basis. Whereasfor atomic orbital basissetsthe number of functions needed
to describe the density grows quadratically with the size of the system, there is
only a linear dependencefor plane waves.

3.1.3 K{Points and Cuto s

In actual calculationsthe in nite sumsover G vectorsand cellshasto betruncated.
Furthermore, we haveto approximate the integral over the Brillouin zoneby a nite
sum over special k{p oints

dk ! Wy ; (120)

where wy are the weights of the integration points. Sthemeson how to choosethe
integration points e cien tly are available in the literature 30:123:435 where also an
overview 17° on the useof k{p oints in the calculation of the electronic structure of
solids can be found.

The truncation of the plane wave basisrests on the fact that the Kohn{Sham
potential VXS (G) convergesrapidly with increasingmodulus of G. For this reason,
at eat k{p oint, only G vectorswith a kinetic energylower than a given maximum
cuto

1. .
Sik+Gj*  Eau (121)
are included in the basis. With this choice of the basisthe precision of the calcu-

lation within the approximations of density functional theory is cortrolled by one
parameter Ec,; only.
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The number of plane wavesfor a given cuto dependson the unit cell and the
k{p oint. An estimate for the sizeof the basisat the certer of the Brillouin zoneis
1 3=2
Npw = 52 Ecut (122)
where E¢; is in Hartree units. The basis set neededto descrike the density cal-
culated from the Kohn-Sham orbitals hasa correspnding cuto that is four times
the cuto of the orbitals. The number of plane waves neededat a given density
cuto is therefore eight times the number of plane wavesneededfor the orbitals.
It is a common approximation in density functional theory calculations 536:169
to use approximate electronic densities. Instead of using the full description, the
density is expandedin an auxiliary basis. An incomplete plane wave basis can be
consideredas an auxiliary basiswith special properties %’1. Becauseof the lIter
property of plane wavesthe new density is an optimal approximation to the true
density. No additional diculties in calculations of the energy or forcesappear.
The only point to cortrol is, if the accuracy of the calculation is still su cien t.
Finally, sumsover all unit cellsin real spacehave to be truncated. The only
term in the nal energy expressionwith sud a sum is the real spacepart of the
Ewald sum (seeSect. 3.2). This term is not a major cortribution to the workload
in a density functional calculation, that is the cuto can be setrather generously

3.1.4 Real Smce Grid

A function givenasa nite linear combination of plane wavescan also be de ned
as a set of functional valueson a equally spacedgrid in real space. The sampling
theorem (seee.g. Ref. 492) givesthe maximal grid spacingthat still allowsto hold
the sameinformation as the expansioncoe cien ts of the plane waves. The real
spacesampling points R are de ned

R =hNqg ; (123)

where N is a diagonal matrix with the ertries 1-Ns and q is a vector of integers
rangingfrom 0to Ns 1 (s= X, y, z). Tofulll the samplingtheorem Ns hasto
be bigger than 2max(gs) + 1. To be able to usefast Fourier techniques, Ng must
be decommsableinto small prime numbers (typically 2, 3, and 5). In applications
the smallestnumber Ng that ful lls the above requiremerts is chosen.

A periodic function can be calculated at the real spacegrid points

X
f(R)y= f(G)expliG R] (124)
= f(G)exp2 i (h') g (hNq) (125)
¢}
—XfG X 2i ex 2i ex2i : (126)
= ( )epN—ngqx pN—yquy pN—Zgzqz :

g

The function f (G) is zero outside the cuto region and the sum over g can be
extended over all indices in the cube gI'®:::g"®. The functions f (R) and
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f (G) are related by three{dimensional Fourier transforms

f(R) = inv_FT [f (G)] (127)
f(G) = fw_FT[f (R)] : (128)
The Fourier transforms are de ned by
NG IR TN 1
[inv_FT [f (G)lyyw = £s,
j=0 k=0 1=0
L2 .2 2
exp|N—XJu exp|N—ykv exp|N—ZIW (129)
NG IR T 1
[fwFT [f (R)]]j i = fivw

u=0 v=0 w=0

.2 2 2 )
exp |N—Xju exp |N—ka exp |N—ZIW ; (130)
where the appropriate mappingsof g and g to the indices

[u;viw] = g (131)
fi;kilg=gs if gs O (132)
fj; K;lg= Ns+gs if gs<O (133)

have to be used. From Egs. (129) and (130) it can be seen,that the calculation
of the three{dimensional Fourier transforms can be performed by a seriesof one
dimensional Fourier transforms. The number of transforms in ead direction is
NxNy, NxNz, and NyN; respectively. Assuming that the one-dimensionaltrans-
forms are performed within the fast Fourier transform framework, the number of
operations per transform of length n is approximately 5nlogn. This leadsto an
estimate for the number of operations for the full three-dimensionaltransform of
5N logN, whereN = NyNyN,.

3.1.5 Pseudoptentials

In order to minimize the sizeof the plane wave basis necessaryfor the calculation,
core electrons are replaced by pseudoptentials. The pseudomtential approxima-
tion in the realm of solid{state theory goesbad to the work on orthogonalized
plane waves?®® and core state projector methods 4%, Empirical pseudomtentials
were used in plane wave calculations 2°4:793 put new developmerts have consid-
erably increasede ciency and reliability of the method. Pseudoptential are re-
quired to correctly represen the long rangeinteractions of the coreand to produce
pseudo{wavefunction solutions that approad the full wavefunction outside a core
radius r¢. Inside this radius the pseudomtential and the wavefunction should be as
smooth aspossible,in order to allow for a small plane wave cuto . For the pseudo{
wavefunction this requires that the nodal structure of the valencewavefunctions
is replacedby a smooth function. In addition it is desiredthat a pseudomtential

is transferable 238197 this meansthat one and the same pseudomtential can be
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usedin calculations of di erent chemical ervironment resulting in calculations with
comparableaccuracy

A rst major step to achieve all this conicting goalswas the introduction of
"norm{conservation" 822:593 Norm{conserving pseudoptertials haveto be angular
momertum dependent. In their most generalform they are semi{local

X
VPP (r; I‘% = Yim (DVI(r) r:roYim (rO) ; (134)

Im

where Y|, are sphericalharmonics. A minimal set of requiremeris and a construc-
tion schemefor soft, semi{local pseudomtentials were developed 27428 | Sincethen
many variations of the original method have been proposed, concertrating either
on an improvemert in softnessor in transferability. Analytic represemations of the
corepart of the potential 326:626:627:509 were used. Extended norm-consenation 564
was introduced to enhancetransferability and new conceptsto increasethe soft-
nesswere preseried 59509369 More information on pseudomtentials and their
construction can be found in recen review articles 487:578:221,

Originally generatedin a semi-local form, most applications usethe fully separa-
ble form. Pseudomtentials can be transformed to the separableform using atomic
wavefunctions 33%:73:659  Recertly 239288 g new type of separable,norm-conserving
pseudoptentials wasintroduced. Local and non-local parts of these pseudomten-
tials have a simple analytic form and only a few parametersare neededto charac-
terize the potential. Theseparametersare globally optimized in order to reproduce
many properties of atoms and ensurea good transferability.

A separablenon-local pseudomtential can be put into general form (this in-
cludesall the above mentioned types)

X
VPP(rir9 = (Veore (1) + Vioca (1)) ryrot P.Z(r)hmP.(rO) : (135)
k;l

The local part has beensplit into acore( 1=r forr ! 1 ) and a short-ranged
local part in order to facilitate the derivation of the nal energy formula. The
actual form of the core potential will be de ned later. The local potential  Vigca
and the projectors Py are atom-certered functions of the form

M) ="30r R Ym () (136)
that can be expandedin plane waves
X
()= " (G)expliG r1S(G) Ym (T (137)
G

R, denote atomic positions and the so{called structure factors S, are de ned as

SI(G)=-exp[ iIG R|] : (138)
The functions ' (G) are calculated from ' (r) by a Besseltransform
z 1
"(G)=4 (i) drr2' (r)ji(Gr) ; (139)
0
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wherej| are spherical Besselfunctions of the rst kind. The local pseudomtential
and the projectors of the nonlocal part in Fourier spaceare given by

4 Z1
Viocal(G) = — drr? Mocal (r)j o(Gr) (140)
0
Z 1
P((G) = P=( i) ARG Yin (3 (141)

wherelm are angular momertum quantum numbers assaiated with projector

3.2 Electrostatic Energy
3.2.1 Generml Concepts

The electrostatic energy of a system of nuclear chargesZ, at positions R, and
an electronic charge distribution n(r) consistsof three parts: the Hartree energy
of the electrons, the interaction energy of the electrons with the nuclei and the
internuclear interactions

27

Ees = % dr droin.(r)n(ro)

TN
X
drVio(nn(y+ & _E2

I 2I§JjR| Rij

+

(142)

The Ewald method (seee.g. Ref. 12) can be usedto avoid singularities in the
individual terms whenthe systemsizeisin nite. In orderto achievethis a Gaussian
core charge distribution assaiated with ead nuclei is de ned

" #
Z| 3=2 r R| 2
ex : 143

ne(r) =

It is corveniert at this point to make useof the arbitrariness in the de nition of the
core potential and de ne it to be the potential of the Gaussiancharge distribution
of Eq. (143)

z

| . .
| A 11 (o 4 ir Rij .
Veore (1) = dr ir I‘q = ir leerf Rf ) (144)

where erf is the error function. The interaction energy of this Gaussiancharge
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distributions is now added and subtracted from the total electrostatic energy
ZZ

1 On(r)n(ro)
EES - 2 dr dr Jr rq
yAV4
2 ir TOJ
27
& draronentd
5 jror9 X
1 VAWA
| 1 _arel
+ l dr Veore(r)n(r) + 2|6J iRi Ryj
yAV4
5 dr® gr 9 -

whereng(r) = P , NL(r). The rst four terms can be combined to the electrostatic
energy of a total charge distribution n¢ (r) = n(r) + ne(r). The remaining terms
are rewritten as a double sum over nuclei and a sum over self{energy terms of the
Gaussiancharge distributions

Ntot (r)ntot (TO)
B 3

JRi Ryj 5 X 1 Z_|2
e I

1
EES:E drdo

1 X ZZ
+Z 12 erfcd g

2165 R Ry RSZ + RS2 I

where erfc denotesthe complemernary error function.

3.2.2 Periodic Systems

For a periodically repeated system the total energy per unit cell is derived from
the above expressionby using the solution to Poisson'sequation in Fourier space
for the rst term and make useof the quick convergenceof the secondterm in real
space.The total chargeis expandedin plane waveswith expansioncoe cien ts

X
Nt (G) = n(G)+  ng(G)S (G) (147)
|
X
= n(G) 1 p%exp %GZRFZ S (G) : (148)

|
This leadsto the electrostatic energyfor a periodic system

jNiot (G)j?

Egs = 2 G2 + Eownl Eserr ; (149)
G 60
where > 3
X oX 2,7 iR Ry Lj
Eown = iR IR J Lj el’f(,4J 4 |7JJ 5 (150)
oL I 3 b RS + RS2
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and
X 1 z7
Eserr = —
self | pZ_Rf
Here, the sumsexpandover all atomsin the simulation cell, all direct lattice vectors
L, and the prime in the rst sumindicatesthat | < J isimposedfor L = 0.

(151)

3.2.3 Cluster Boundary Conditions

The possibility to usefast Fourier transforms to calculate the electrostatic energy
is one of the reasonsfor the high performance of plane wave calculations. How-
ever, plane wave based calculations imply periodic boundary conditions. This is
appropriate for crystal calculations but very unnatural for moleculeor slab calcu-
lations. For neutral systemsthis problem is circumverted by use of the supercell
method. Namely, the moleculeis periodically repeated but the distance between
ead moleculeand its periodic imagesis so large that their interaction is negligible.
This procedureis somewhatwasteful but can lead to satisfactory results.

Handling charged molecular systemsis, howewer, considerably more di cult,
due to the long range Coulomb forces. A charged periodic system has in nite
energyand the interaction betweenimagescannot really be completely eliminated.
In order to circumvert this problem seweral solutions have been proposed. The
simplest x-up is to add to the system a neutralizing background charge. This
is achieved trivially asthe G = 0 term in Eq. (149) is already eliminated. This
leadsto nite energiesbut doesnot eliminate the interaction betweenthe images
and makesthe calculation of absolute energiesdi cult.  Other solutions involve
performing a set of di erent calculations on the systemsud that extrapolation to
the limit of in nitely separatedimagesis possible. This procedureis lengthy and
one cannot useit easily in molecular dynamics applications. It has been shown,
that it is possibleto estimate the correction to the total energy for the removal
of the image charges®7®. Still it seemsnot easyto incorporate this scheme into
the frameworks of molecular dynamics. Another method °:792:361 works with the
separationof the long and short range parts of the Coulomb forces. In this method
the low{order multip ole momerts of the charge distribution are separatedout and
handled analytically. This method was usedin the context of coupling ab initio
and classicalmolecular dynamics 76.

The long-rangeforcesin Eq. (146) are cortained in the rst term. This term
can be written

z
1 Ntot ()Nt (1 1
5 dromtj(r)it:%(o) = 5 A (N (1) (152)
where the electrostatic potential Vi (r) is the solution of Poisson's equation (see
Eq. (80)). There are two approacesto solve Poisson'sequation subject to the
boundary conditions Vy(r) ! Oforr ! 1 implemented in CPMDBoth of them
rely on fast Fourier transforms, thus keepingthe sameframework asfor the periodic
case.
The rst method is dueto Hockney 3°° andwas rst appliedto density functional
plane wave calculationsin Ref. %6, In the following outline, for the sake of simplicity,
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a one-dimensionalcaseis presened. The charge density is assumedto be non-zero
only within an interval L and sampledon N equidistant points. These points are
denoted by xp. The potential can then be written

X

Vh (Xp) = ﬁ G(Xxp Xpo)N(Xpo) (153)
po=1
X
= % G(Xp  Xpo)n(Xpo) (154)
p°=0

forp= 0;1;2;:::N, where G(x, Xpo) is the correspnding Green's function. In
Hockney's algorithm this equation is replacedby the cyclic corvolution

2X+l
Vh(Xp) = N G(Xp Xpo)A(Xpo) (155)
p°=0
wherep=0;1;2;:::2N + 1, and

nxp) 0 p N

ROG) = g N p 2N+1 (156)
G(xp) = G(xp) (N+1) p N (157)
R(Xp) = R(Xp + L) (158)
G(xp) = G(xp + L) (159)

The solution Vi (xp) can be obtained by a seriesof fast Fourier transforms and has
the desiredproperty

Vh(Xp) = Vu(xp) for0 p N : (160)

To remove the singularity of the Green's function at x = 0, G(x) is modied for
small x and the error is corrected by using the identity
G(x) = Eerf Xy Eerfc X ; (161)
X re X re
wherer is chosensud, that the short-rangedpart can be accurately described by
a plane wave expansionwith the density cuto. In an optimized implementation
Hockney's method requiresthe double amount of memory and two additional fast
Fourier transforms on the box of double size(seeFig. 6 for a o w chart). Hockney's
method canbe generalizedto systemswith periodicity in one(wires) and two (slabs)
dimensions. It was pointed out 1”3 that Hockney's method givesthe exact solution
to Poisson'sequation for isolated systemsif the boundary condition (zero density
at the edgesof the box) are ful lled.
A dierent, fully reciprocal spacebasedmethod, that can be seenasan approx-
imation to Hockney's method, wasrecerly proposed3®3. The nal expressionfor
the Hartree energyis alsobasedon the splitting of the Green'sfunction in Eq. (161)

X
Egs = 2 VHMT (G)n?ot (G) + Eown Eserr : (162)
G
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Neot (G) Inv.FT Neot (R)

Frot (G) fw FT Frot (R)

inv_FT

VH(G) = ( G)mot (G)

@(G) ) fw FT Vi(R)

=
CEH = NN,N; R Vi (R)Ntot (R)>

Figure 6. Flow chart for the calculation of long-ranged part of the electrostatic energy using the
method by Hockney 3%°. The part inside the dashed box is calculated most e cien tly with the
pro cedure outlined by Eastwood and Brownrigg 173.

Wi (R)

The potential function is calculated from two parts,

VT (G) = Vu(G) + Wu(G) ; (163)
where V4 (G) is the analytic part, calculated from a Fourier transform of erfc
4 G?r?
Vi (G) = &z 1 exp 4° n(G) (164)

and Vy (G) is calculated from a discrete Fourier transform of the Green's function
on an appropriate grid. The calculation of the Green'sfunction can be doneat the
beginning of the calculation and has not to be repeated again. It is reported 393
that a cuto of ten to twerty percen higher than the one employed for the charge
density givesconvergedresults. The sametechnique can alsobe applied for systems
that are periodic in one and two dimensions3%4.

If the boundary conditions are appropriately chosen,the discrete Fourier trans-
forms for the calculation of Vi (G) can be performed analytically 437, This is
possiblefor the limiting casewherer. = 0 and the boundary conditions are on a
sphereof radius R for the cluster. For a one-dimensionalsystemwe choosea torus
of radius R and for the two-dimensionalsystema slab of thicknessZ. The electro-

static potertial for these systemsare listed in Table 2, where Gy, = gf + g 1=
and J, and K, arethe Besselfunctions of the rst and secondkind of integer order
n.

Hockney's method requiresa computational box suc that the charge density is
negligible at the edges. This is equivalent to the supercell approac 51°. Practical
experiencetells that a minimum distance of about 3 A of all atoms to the edgesof
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Table 2. Fourier space formulas for the Hartree energy, seetext for de nitions.

Dim. | periodic (G’=4 )W4(G) V1 (0)
0 { (1 cos[RG])n(G) 2 R%n(0)
1 z (1+ R(GxyJ1(RGyxy) Ko(Rg)

9:J0(RGxy) K1(Rg,))) n(G) 0
2 X, Y @ ( D%exp[ GZ=2])n(G) 0
3 X, Y, 2 n(G) 0

the box is su cien t for most systems. The Green'sfunction is then applied to the
charge density in a box double this size. The Green'sfunction hasto be calculated
only onceat the beginning of the calculation. The other methods presetted in this
chapter require a computational box of double the size of the Hockney method as
they are applying the arti cially periodic Green'sfunction within the computational
box. This canonly be equivalent to the exactHockney method if the box is enlarged
to double the size. In plane wave calculations computational costs grow linearly
with the volume of the box. ThereforeHockney's method will prevail over the others
in accuracy speed, and memory requirements in the limit of large systems. The
direct Fourier spacemethods have advantagesthrough their easyimplementation
and for small systems,if not full accuracyis required, i.e. if they are used with
smaller computational boxes. In addition, they can be of great usein calculations
with classicalpotentials.

3.3 Exchangeand Correlation Energy

Exchangeand correlation functionals implemented in the CPMDPode are of the local

type with gradiernt corrections. These type of functionals can be written as (see

also Egs. (88) and (84))
z

X
Exe = dr's(n;r n)n(r) = "% (G)N?(G) (165)
G

with the correspnding potential

Fe X @ @Fx .
@ @s @@n)

S

Ve (1) =

(166)

where Fy. = "xc(n;r n)n and @n is the s-commnert of the density gradiert.
Exchange and correlation functionals have complicated analytical forms that
giverise to high frequency componerts in "4 (G). Although these high frequency
componerts do not enter the sumin Eq. (165) dueto the lter e ect of the density,
they a ect the calculation of "4.. As the functionals are only local in real space,not
in Fourier space they haveto be evaluated on a real spacegrid. The function " (G)
can then be calculated by a Fourier transform. Therefore the exact calculation of
Exc. would require a grid with in nite resolution. Howewer, the high frequency
componerts are usually very small and even a moderate grid givesaccurate results.
The use of a nite grid results in an e ective rede nition of the exchange and
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correlation energy

X X
E.= RN (1 n)(R)N(R) = ] ¢ (G)n(G) ; (167)

where 4 (G) is the nite Fourier transform of " (R). This de nition of Ey¢
allows the calculation of all gradients analytically. In most applications the real
spacegrid usedin the calculation of the density and the potentials is also used
for the exchange and correlation energy Grids with higher resolution can be used
easily The density is calculated on the new grid by use of Fourier transforms and
the resulting potential is transfered badk to the original grid. With this procedure
the di erent grids do not have to be commensurate.

The above rede nition has an undesired side e ect. The new exdange and
correlation energy is no longer translationally invariant. Only translations by a
multiple of the grid spacing do not change the total energy This introducesa
small modulation of the energy hyper surface 8, known as "ripples". Highly
accurate optimizations of structures and the calculation of harmonic frequencies
can be a ected by the ripples. Using a densergrid for the calculation of E . is the
only solution to avoid these problems.

The calculation of a gradiernt corrected functional within the plane wave frame-
work can be conducted using Fourier transforms 85, The o wchart of the calcula-
tion is preserted in Fig. 7. With the use of Fourier transforms the calculation of
secondderivativesof the charge density is avoided, leading to a numerically stable
algorithm. To this end the identity

@ xc — @y @n
@@n) @ njjr nj

(168)

is used.

This is the placeto say somewords on functionals that include exact exchange.
As mertioned in Sect. 2.7 this type of functional has beenvery popular recerily
and improvemernts of results over GGA{t ype density functionals for many systems
and properties have beenreported. Howewer, the calculation of the Hartree{Fock
excthange causesa considerable performance problem in plane wave calculations.
The Hartree{Fock exdangeenergyis de ned as 5%

x £Z ey
Enrx = drar®i—~1> 2 j(rr) ,]réro) ; (169)
ij
where
i (1) = i(r) j(r): (170)

From this expressionthe wavefunction force is easily derived and can be calculated
in Fourier space
1 @Enrx _
fi @7 (G)
The force calculation is best performed in real space,whereasthe potential is cal-
culated in Fourier space.For a systemwith Ny electronic statesand N real space

Viex (G G96(G9 (171)

GO
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I
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As(R) = @ njir rr:j
3 fwFT
As(G)

I
@\s(G) = iIGsAs(G)
3 inv FT
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. [
Exc = m R "xc(R)n(R)
Vie(R) = GF(R)+  @As(R)

Figure 7. Flow chart for the calculation of the energy and potential of a gradient corrected ex-
change and correlation functional.

grid points, a total of 5N?2 three{dimensional transforms are needed,resulting in

approximately 25N 2N logN operations neededto perform the calculation. This

has to be comparedto the 15NN logN operations neededfor the other Fourier
transforms of the charge density and the application of the local potential and the

4AN2N operations for the orthogonalization step. In calculations dominated by the

Fourier transforms an additional factor of at leastNy, is needed.If onthe other hand
orthogonalization dominatesan increasein computer time by a factor of 5logN is
expected. Therefore, at least an order of magnitude more computer time is needed
for calculations including exact exdhange comparedto ordinary density functional

calculations. Consequetly, hybrid functionals will only be usedin exceptionalcases
together with plane waves262:128,
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3.4 Total Energy, Gradients, and StressTensor
3.4.1 Total Energy

Molecular dynamics calculations with interaction potentials derived from density
functional theory require the evaluation of the total energy and derivatives with
respect to the parametersof the Lagrangian. In this sectionformulas are given in
Fourier spacefor a periodic system. The total energycan be calculated asa sum of
kinetic, external (local and non-local pseudoptential), exchange and correlation,
and electrostatic energy (to be comparedwith Eg. (75))

Etotal = Ekin + EIF;l::aI + EPP + Exc + Egs (172)

nonlo cal

The individual terms are de ned by
X X X

1 . . .
Ein = Wk SHi(K)IG + kj?jci (G;k)j? (173)
X i G
Elcal = Vioeal(G) S (G)n(G) (174)
o ¢ x X X -
Eronlo cal = Wi fi(k) F il (k) h I:| i (k) (175)
k i Iy 21
Exc = x(G)n’(G) (176)
G
Egs = 2 Jtot% + Eour Eselif: (177)
G680

The overlap betweenthe projectors of the non-local pseudoptential and the Kohn{
Sham orbitals has beenintroducedin the equation above

X
Fri(k) = pl: P'(G)SI(G + k) C'(G; k) : (178)
G

An alternativ e expression,using the Kohn{Sham eigervalues (k) canalsobe used

X X
Etota = Wi fi(k) i(k)

k X i
(Ve (G)  "xe(G)) n*(G)
G
X _n G -2 -n G i2
5 in(G)j GZJ (G + Eoul  Eser
G 60
. B (179)

to be comparedto Eq. (86). The additional term Ey in Eq. (179) is neededto
have an expressionfor the energythat is quadratic in the variations of the charge
density, asit is true for Eq. (172). Without the correction term, which is zero for
the exact charge density, small di erences between the computed and the exact
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density could giverise to large errors in the total energy'?°. The correction energy

can be calculated from

X nin (G) pout (G)
G2 G2

Etot = 2 (nout (G ))'7

G 60

Vit (G)  V2(G) (n™(G))”; (180)
G

wheren™ and n° are the input and output chargedensitiesand V,! and V.2 the
correspnding exchangeand correlation potentials. This term leadsto the so{called
\non{self{consistency correction" of the force, introducedin Eq. (68).

The useof an appropriate k{p oint meshis the most e cien t method to calculate
the total energy of a periodic system. Equivalert, although not as e cient, the
calculation can be performed using a supercell consisting of replications of the
unit cell and a single integration point for the Brillouin zone. In systemswhere
the translational symmetry is broken, e.g. disorder systems, liquids, or thermally
excited crystals, periodic boundary conditions can still be usedif combined with
a supercell approach. Many systemsinvestigated with the here described method
fall into these categories,and therfore most calculations using the Car-Parrinello
molecular dynamicsapproad are using supercellsand a single k{p oint "in tegration
stheme”. The only point calculated is the certer of the Brillouin zone({ point
;k = 0). For the remainder of this chapter, all formulas are given for the {p oint
approximation.

3.4.2 Wavefunction Gradient

Analytic derivativesof the total energywith respect to the parametersof the calcu-
lation are neededfor stable molecular dynamicscalculations. All derivativesneeded
are easily accessiblein the plane wave pseudomtential approad. In the following
Fourier spaceformulas are preserted

i@total — }
i @7(G) 2
+

—h

G%G(G)
X

Viee(G GYci(GH
XX
+

Fi h" P'(G)SI(G) ; (181)

where Vo is the local potential

Niot (G)

X
Vioo(G) = Vioca(G)S1 (G) + Vie (G) + 4 — 57

(182)

Wavefunction gradients are neededin optimization calculations and in the Car-
Parrinello molecular dynamics approad.
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3.4.3 Gradient for Nuclear Positions

The derivative of the total energywith respect to nuclear positions is neededfor
structure optimization and in molecular dynamics, that is

G oral - @Ezal + @rﬁ)cl):nlo cal 4 @Es | (183)
@RI;S @RI;S @RI;S @RI;S
as the kinetic energy Eyi, and the exchange and correlation energy Ey. do not
depend directly on the atomic positions, the relevant parts are

PP X ,)

ﬁ: ) 'Gs( Vioea (G) S (G)n'('G) | (184)
PP X X 2 @ @,

nonlo cal — fi E. “h — i — W wF. (185
@R i Y H @R ¥ @R ' i ( )
@ks X nZ(G) @ o

= LSS —>0 1

®is o, 06 (OO G (186)

The cortribution of the projectors of the non-local pseudoptentials is calculated
from
@":I i

X
= pl: iGsP'(G)S/(G) G (G;k) : (187)
@RI;S

G

Finally, the real spacepart cortribution of the Ewald sum is

8 2 3
@om _ X oX < Z, 2, fc4j|3' Ry Ljg
®Ris DR Ry L T, et
: J oL Ry“+ RS
39
+92:q 1 — Z|RZJ = exp4 jR| R; Lj 5
R?Z"' RSZJ | J J R?Z"' RSZ y
(Ri;s Rys Ls): (188)

The selfenergyE s is independent of the atomic positions and doesnot corntribute
to the forces.

3.4.4 Internal StressTensor

For calculations where the supercell is changed (e.g. the combination of the Car{
Parrinello method with the Parrinello{Rahman approac 2°9%:%°) the electronic in-
ternal stresstensor is required. The electronic part of the internal stresstensor is
de ned as #4441 (seealso Sect. 4.2.3)

1 X @total

— hi, : 189
@ us sv ( )

uw =
s

59



An important identit y for the derivation of the stresstensor is

@
@]UV

The derivativ esof the total energywith respectto the componerts of the cell matrix
h can be performed on every part of the total energyindividually ,

@Etotal - @Ein + @Ezeﬂ + @rﬁ)clm:nlo cal @ + @Ees :

@]UV @]UV @]UV @]UV @]UV @]UV
Using Eqg. (190) extensiwely, the derivativescan be calculated for the caseof a plane
wave basisin Fourier space?%?,
@ «in X XX

= (hY)y : (190)

(191)

@ fi GuGs(hY)s/'ic(G)i? (192)
uv i G s
PP X X Vi
Ou € 8@ 5 6y (193)
uv I G ( uv | )
: ?
rF1)c|)3nIocaI — X f; X X E . ?hl @l oy @, i h'. F,. (194)
@y i Y i @y @y ' H
@& X .
@XC = n?(G) [Vic (G) xc(G)] (ht)uvl
uv G
X X @ x(G)
: ? Xc ty 1
+ . iG,n"(G) “@an) (h%)gy (195)
@Ees _ 5 X X jntot (G)j?
- - ~o __ us
@ G860 s G
+ NGt (G) Nt (G)
G2 G2 | )
1X | | 2. t 1
+§ nC(G)(RC) GuGs GuGS(h )sv
|
. _%OV” : (196)
uv
Finally, the derivative of the overlap cortribution to the electrostatic energyis
8 2 3
@ ovr — X oX < VARA el’fC4j|3| Ry Lj5
@ oo PR Ry LT T gery pe2
39
N 2 VAV exph iRi Ry sz5_
fal - - —qi_ i
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X
(Riuw Ruou Lu)Ris Rys Ls)(h)g': (197)

S
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The local part of the pseudoptential V! .,,(G) and the nonlocal projector func-
tions depend on the cell matrix h through the volume, the Besseltransform integral
and the sphericalharmonicsfunction. Their derivativesare lengthy but easyto cal-
culate from their de nitions Egs. (140) and (141)

% = Vkl)caI(G)(ht)UVl
uv Z
L ldrr2 Viocal (r) @o(Cr) Yim (%7 (198)
0 X @]UV
gui _ {51:( ' ¢(G)SI(G)
uv W G I 7
% %Ym(‘*. I(h)y! 01 drr?P'(r)ji(Gr)
Z
(5 drezply QGO (199)
0 @]UV

3.4.5 Non-linear Core Correction

The successof pseudomtentials in density functional calculations relies on two
assumptions. The transferability of the coreelectronsto di erent environments and
the linearization of the exchangeand correlation energy The secondassumptionis
only valid if the frozencore electronsand the valencestate do not overlap. Howeer,
if there is signi cant overlap between core and valencedensities, the linearization
will leadto reducedtransferability and systematicerrors. The most straightforward
remedy is to include \semi{core states" in addition to the valenceshell, i.e. one
more inner shell (which is from a chemical viewpoint an inert \core level") is treated
explicitely. This approad, however, leadsto quite hard pseudomtentials which call
for large plane wave cuto s. Alternativ ely, it was proposedto treat the non{linear
parts of the exchange and correlation energy E,. explicitely 374, This idea does
not leadto an increaseof the cuto but amelioratesthe above{mentioned problems
quite a bit. To achieve this, E; is calculated not from the valencedensity n(R)
alone, but from a modi ed density

R(R) = n(R) + Rcore(R) ; (200)

where Reore(R) denotesa density that is equal to the core density of the atomic
referencestate in the region of overlap with the valencedensity

Reore (1) = Neore(r)  ifr>ro ; (201)

with the vanishing valencedensity inside ro. Closeto the nuclei a model density
is chosenin order to reducethe cuto for the plane wave expansion. Finally, the
two densities and their derivativesare matched at ro. This procedureleadsto a
modi ed total energyin Eq. (176), where E,. is replace by

Exc = Exc(N+ Rcore) ; (202)
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and the correspnding potential is
Vie = Ve (N + Beore) - (203)
The sum of all modi ed coredensities

X
Reore(G) = ﬁlcore(G)Sl (G) (204)
|

dependson the nuclear positions, leading to a new cortribution to the forces
@E e X

@Rl < = iGva?: (G)ﬁLore(G)Sl (G) ; (205)
! G
and to the stresstensor
@xc X X ? @Lore (G)
= Vi (G)—=———=S5 (G) : 206
@y S XC( ) @y ! ( ) ( )

The derivativ e of the corechargewith respect to the cell matrix canbe performedin
analogy to the formula given for the local potential. The method of the non-linear
core correction dramatically improvesresults on systemswith alkali and transition
metal atoms. For practical applications, one should keep in mind that the non-
linear core correction should only be applied together with pseudoptentials that
were generatedusing the sameenergy expression.

3.5 Energy and Force Calculations in Practice

In Sect. 3.4 formulas for the total energy and forceswere given in their Fourier
spacerepresemation. Many terms are in fact calculated most easily in this form,
but someterms would require double sums over plane waves. In particular, the
calculation of the charge density and the wavefunction gradient originating from
the local potential

Viee(G G96(GH : (207)

GO

The expressionin Eq. (207) is a corvolution and can be calculated e cien tly by a
seriesof Fourier transforms. The ow charts of this calculations are preserted in
Fig. 8. Both of thesemodulescontain a Fourier transform of the wavefunctionsfrom
G spaceto the real spacegrid. In addition, the calculation of the wavefunction
forces requires a badk transform of the product of the local potential with the
wavefunctions, performed on the real spacegrid, to Fourier space. This leadsto
a number of Fourier transforms that is three times the number of states in the
system. If enough memory is available on the computer the secondtransform of
the wavefunctionsto the grid can be avoided if the wavefunctionsare storedin real
spaceduring the computation of the density. These modules are further usedin
the ow chart of the calculation of the local potential in Fig. 9. Additional Fourier
transforms are neededin this part of the calculation. Howewer, the number of
transforms doesnot scalewith the number of electronsin the system. Additional
transforms might be hidden in the module to calculate the exchangeand correlation
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Figure 8. Flow chart for the calculation of the charge density (on the left) and the force on the
wavefunction from the local potential (on the right). The charge density calculation requires N
(number of states) three dimensional Fourier transforms. For the application of the local potential
two Fourier transforms per state are needed. If enough memory is available the rst transform can
be avoided if the wavefunction on the real spacegrid are stored during the density calculation .

potential (seealsoFig. 7) and the Poissonsolver in casesvhenthe Hockney method
is used (seeFig. 6).

The calculation of the total energy together with the local potential is shavn
in Fig. 10. The overlap betweenthe projectors of the nonlocal pseudoptential and
the wavefunctions calculated in this part will be reusedin the calculation of the
forceson the wavefunctions. There are three initialization stepsmarkedin Fig. 9.
Step one has only to be performed at the beginning of the calculation, as the
guantities g and Eser are constarts. The quartities calculated in step two depend
on the absolute value of the reciprocal spacevectors. They have to be recalculated
wheneer the box matrix h changes. Finally, the variablesin step three depend
on the atomic positions and have to be calculated after eat change of the nuclear
positions. The o w charts of the calculation of the forcesfor the wavefunctionsand
the nuclei are showvn in Figs. 11 and 12.

3.6 Optimizing the Kohn-Sham Orbitals

Advancesin the application of plane wave basedelectronic structure methods are
closelyrelated to improved methods for the solution of the Kohn{Sham equations.
There are now two di erent but equally successfubpproadesavailable. Fix{p oint
methods basedon the diagonalization of the Kohn{Sham matrix follow the more
traditionally ways that go bad to the roots of basisset methodsin quantum chem-
istry. Direct nonlinear optimization approadessubject to a constraint were initi-

ated by the successof the Car{P arrinello method. The following sectionsreview
someof thesemethods, focusing on the special problems related to the plane wave
basis.
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Figure 9. Flow chart for the calculation of the local potential from the Kohn{Sham orbitals.
This module calculates also the charge density in real and Fourier space and the exchange and
correlation energy, Hartree energy, and local pseudopotential energy.

3.6.1 Initial Guess

The initial guessof the Kohn{Sham orbitals is the rst stepto a successfulkalcu-
lation. One would like to introduce as much knowledge as possibleinto the rst

step of the calculation, but at the sametime the procedure should be generaland
robust. One should also take care not to introduce arti cal symmetriesthat may
be presened during the optimization and lead to false results. The most general
initialization might be, choosing the wavefunction coe cien ts from a random dis-
tribution. It makessenseto weight the random numbers by a function re ecting

the relative importance of di erent basis functions. A good choice is a Gaussian
distribution in G2. This initialization sdemeavoids symmetry problems but leads
to energiesfar o the nal resultsand esgecially highly tuned optimization methods
might have problems.

A more educated guessis to use a superposition of atomic densitiesand then
diagonalizethe Kohn{Sham matrix in an appropriate basis. This basiscan be the
full plane wave basis or just a part of it, or any other reasonablechoice. The
most natural choice of atomic densitiesand basissetsfor a plane wave calculation
are the pseudoatomic density and the pseudoatomic wavefunction of the atomic
referencestate usedin the generationof the pseudomtential. In the CPMDode this
is one possibility, but often the data neededare not available. For this casethe
default option is to generatea minimal basisout of Slater functions (seeEq. (98) in
Sect. 2.8) and combine them with the help of atomic occupation numbers (gathered
using the Aufbau principle) to an atomic density. From the superposition of these
densitiesa Kohn{Sham potential is constructed. The Slater orbitals are expanded
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Figure 10. Flow chart for the calculation of the local potential and total energy. Initialization
steps are marked with numbers. Step 2 has to be repeated whenever the size of the unit cell
changes. Step 3 has to be repeated whenever nuclear positions have changed.

in plane wavesand using the sameroutines asin the standard code the Kohn{Sham
and overlap matrices are calculatedin this basis. The generaleigervalue problem is
solved and the eigenfunctionscan easily be expressedn the plane wave basisthat
arein turn usedasthe initial wavefunctionsto the optimization routines. Similarly,
agivenplanewave represetation of the total wavefunction canbe projected onto an
auxiliary set of atom{centered functions. This opensup the possibility to perform
population and bond{order analyses(following for instancethe schemesof Mullik en
or Mayer) in plane wave{pseudoptertial calculations 537,

3.6.2 Preconditioning

Optimizations in many dimensionsare often hamperedby the appearanceof di er-

ert length scales. The introduction of a metric that brings all degreesof freedom
onto the same length scale can improve corvergenceconsiderably The applica-
tion of such a metric is called "preconditioning” and is usedin many optimization
problems. If the variablesin the optimization are decoupledthe preconditioning
matrix is diagonal and becomescomputationally tractable even for very large sys-
tems. Fortunately, this is to a large degreethe casefor a plane wave basisset. For
large G vectorsthe Kohn{Sham matrix is dominated by the kinetic energywhich
is diagonal in the plane wave represemation. Basedon this obsenation e cien t
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Figure 11. Flow chart for the calculation of the forces on the wavefunctions.
calculation of the overlap terms F, ; is done outside the loop over wavefunctions. Besides the

wavefunctions and the local potential, the structure factors and the projectors of the nonlocal
pseudopotential are input parameters to this module.
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|
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Figure 12. Flow chart for the calculation of the forces on the nuclei.

preconditioning shemeshave beenproposed®16:610:308;344 “ The preconditioner im-
plemerted in the CPMRode is based on the diagonal of the Kohn{Sham matrix

Hg.co, which is given by

Kg.co=Hg:ic g0 ifjG] G¢ .
; ; ; NG . 208
HGc;Gc G:GO |fJGJ GC ( )

KG;GO
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where G; is a free parameter that can be adjusted to accelerateconvergence.How-
ever, it is found that the actual choiceis not very critical and for practical purposes
it is conveniert not to x Gg, but to use an universal constart of 0.5 Hartree for
Hg..c. that in turn de nes G. for ead system.

3.6.3 Direct Methods

The succesof the Car{P arrinello approad started the interest in other methods
for a direct minimization of the Kohn{Sham energy functional. These methods
optimize the total energyusing the gradient derived from the Lagrangefunction

L=E"S(f ig) i (hif i ) (209)
j
X
S Moy o hHd i (210)
' i
Optimization methods di er in the way orbitals are updated. A steepest descen
basedstheme

G(G) G(G)+ Kglg i(G) (211)

canbe combined with the preconditioner and a line seard option to nd the optimal
step size . Nearly optimal 's can be found with an interpolation basedon a
qguadratic polynomial. In Eq. (211) ;(G) denote the Fourier componerts of the
wavefunction gradiert.

Improved corvergencecan be achieved by replacing the steepest descenh step with
a seart direction basedon conjugate gradients 594:232;616;23,499

G(G) «a(G)+ hi(G): (212)

The conjugate directions are calculated from

(n)
M(G) n=
hWG)= 9, 213

where

gd"(G) = Kgls (M(G) (214)

P . .
(n) — __i i(n+l) (G)Jgi(n+l) (G)i :
g™ (G)jg™(G)i

A very e cient implementation of this method ¢ is basedon a band by band
optimization. A detailed description of this method can also be found in Ref. 472,

The direct inversion in the iterative subspace(DIIS) method 495:144:308 g g
very successfukxtrapolation method that can be usedin any kind of optimization
problems. In quantum chemistry the DIIS sdheme has been applied to wavefunc-
tion optimizations, geometry optimizations and in post{Hartree{F ock applications.
DI IS usesthe information of n previous steps. Togetherwith the position vectors
ci(k)(G) an estimate of the error vector ei(k)(G) for eat previous step k is stored.

(215)
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The best approximation to the nal solution within the subspacespannedby the
n stored vectorsis obtained in a least square senseby writing

X
"M@G)= ddMG) ; (216)
k=1
wherethe dx are subject to the restriction
X
de = 1 (217)
k=1

and the estimated error becomes

X
dM(G)= de () (218)
k=1
The expansioncoe cien ts dy are calculatledofrom a systemof linear equations
1 bip bin 1 d;
1 2 on 1 d> 0
S P &R (219)
hibhz b 1 dn 0
11 10 1

wherethe by are given by X
ba = e (G)id(G)i : (220)

The error vectorsare not known, but canbe approximated within a quadratic model
k k
§96G)= Kels ©G): (221)

In the sameapproximation, assumingK to be a constart, the new trial vectorsare
estimated to be

6(G) ="M (G)+Kgly "V (G) ; (222)
wherethe rst derivative of the energydensity functional is estimated to be
X
"©e)= d M) (223)
k=1

The methods described in this section produce new trail vectors that are not or-
thogonal. Therefore an orthogonalization step has to be added before the new
charge density is calculated X
G (G) G (G)X;i : (224)
k
There are di erent choicesfor the rotation matrix X that lead to orthogonal or-
bitals. Two of the computationally corveniert choicesare the Lewdin orthogonal-
ization

Xji=8,7 (225)
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and a matrix form of the Gram{Schmidt procedure

Xji= (Gt ; (226)
where S is the overlap matrix and G is its Cholesky decomposition
S=GGT : (227)

Recerly new methods that avoid the orthogonalization step have beenintro-
duced. One of them 83 relieson modi ed functionalsthat canbe optimized without
the orthogonality constraint. These functionals, originally introduced in the con-
text of linear scalingmethods 417:452, have the property that their minima coincide
with the original Kohn{Sham energyfunctional. The methods described above can
be usedto optimize the new functional.

Another approac 3% is to use a variable transformation from the expansion
coe cien ts of the orbitals in planewavesto a set of non{redundant orbital rotation
angles. This method was introduced in quantum chemistry 618:149:167 gnd is used
successfullyin many optimization problemsthat involvea setof orthogonal orbitals.
A generalizationof the orbital rotation schemeallowedthe application alsofor cases
wherethe number of basisfunctions is ordersof magnitudesbiggerthan the number
of occupied orbitals. Howewver, no advantage is gained over the standard methods,
asthe calculation of the gradiert in the transformed variablesscalesthe sameasthe
orthogonalization step. In addition, there is no simple and e cien t preconditioner
available for the orbital rotation coordinates.

3.6.4 Fix-Point Methaods

Originally all methods to nd solutions to the Kohn{Sham equations were using
matrix diagonalization methods. It becamequickly clear that direct schemescan
only be usedfor very small systems. The storagerequiremerts of the Kohn{Sham
matrix in the plane wave basisand the scalingproportional to the cube of the basis
set sizelead to unsurmourtable problems. Iterativ e diagonalization schemescan be
adaptedto the special needsof a plane wave basisand when combined with a proper
preconditioner lead to algorithms that are comparableto the direct methods, both
in memory requiremerts and over all scaling properties. Iterativ e diagonalization
schemesare abundart. Methods based on the Lanczos algorithm 357:151:489 cgn
be used as well as conjugate gradiert techniques %697, Very good results have
been achieved by the combination of the DIIS method with the minimization of
the norm of the residual vector 8%:344, The diagonalization methods have to be
combined with an optimization method for the charge density. Methods basedon
mixing 134, quasi-Newtonalgorithms 92:77:319 ‘and DI 1S 495:344:345 gre successfully
used. Also thesemethods usea preconditioning scheme. It was shavn that the op-
timal preconditioning for charge density mixing is connectedto the chargedielectric
matrix 153:4:299:658:48 Eor a plane wave basis, the charge dielectric matrix can be
approximated by expressionsvery closeto the onesusedfor the preconditioning in
the direct optimization methods.

Fix-p oint methods have a slightly larger prefactor than most of the direct meth-
ods. Their advantage lies in the robustnessand capability of treating systemswith
no or small band gaps.
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3.7 Molecular Dynamics

Numerical methods to integrate the equations of motion are an important part
of every molecular dynamics program. Therefore an extended literature exists on
integration techniques (see Ref. 217 and referencesin there). All considerations
valid for the integration of equationsof motion with classicalpotentials also apply
for ab initio molecular dynamics if the Born{Opp enheimer dynamics approad is
used. Thesebasic techniqueswill not be discussedhere.

A good initial guessfor the Kohn{Sham optimization procedureis a crucial
ingrediert for good performanceof the Born{Opp enheimerdynamicsapproad. An
extrapolation schemewasdevised?* that makesuseof the optimized wavefunctions
from previoustime steps. This procedurehasa strong connectionto the basicidea
of the Car{P arrinello method, but is not essetial to the method.

The remainder of this section discussesthe integration of the Car{P arrinello
equationsin their simplest form and explains the solution to the constraints equa-
tion for generalgeometric constraints. Finally, a special form of the equations of
motion will be usedfor optimization purposes.

3.7.1 Car{Parrinel lo Equations

The Car{Parrinello Lagrangian and its derived equations of motions were intro-
duced in Sect. 2.4. Here Eqgs. (41), (44), and (45) are specialized to the caseof
a plane wave basis within Kohn{Sham density functional theory. Speci cally the
functions ; are replacedby the expansioncoe cien ts ¢;(G) and the orthonormal-
ity constraint only dependson the wavefunctions, not the nuclear positions. The
equations of motion for the Car{P arrinello method are derived from this specic
extended Lagrangian
X X 1 X
L= ja@)*+ 5 MiR{ Exs[fGgfRig]
i G | |
X !

X
+ i c(G)G(G) § (228)

ij G

where is the electron mass,and M, are the massesof the nuclei. Becauseof
the expansionof the Kohn{Sham orbitals in plane waves,the orthonormality con-
straint does not depend on the nuclear positions. For basis sets that depend on
the atomic positions (e.g. atomic orbital basissets) or methods that introduce an
atomic position dependert metric (ultra{soft pseudoptentials ©61:351 PAW 143:347
the integration methods have to be adapted (seealso Sect. 2.5). Solutions that in-
clude thesecasescan be found in the literature 280:351:143:310 The Euler{Lagrange
equationsderived from Eq.( 228) are

@& X
& (G) = > + i G(G) (229)
@@©G) |
MR, = %: (230)
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The two sets of equations are coupled through the Kohn{Sham energy functional
and special care hasto be taken for the integration becauseof the orthonormality
constrairt.

The integrator usedin the CPMDBode is basedon the velocity Verlet / rattle
algorithm ©93:638:15 " The velocity Verlet algorithm requires more operations and
more storagethan the Verlet algorithm %64, Howevwer, it is much easierto incorpo-
rate temperature cortrol via velocity scalinginto the velocity Verlet algorithm. In
addition, velocity Verlet allowsto changethe time steptrivially and is conceptually
easierto handle ®38:3%1 |t is de ned by the following equations

Rit+ 0= RIO+ 5 Fi() (231)
Ri(t+ )= Ri(t)+ tR(t+ t)

&t = a+ 5

gi(t+ t)=ci(t)+ teegt(+ t)

Ci(t+ t)=¢(t+ t)+ Xi ¢ (1)

calculate F(t+ t)

calculate fi(t+ t)

Ri(t+ )= Ry(t+ t)+ﬁF|(t+ 0)

A(t+ t)=eg(t+ t)+ —tfi(t+ t)

ci(t+ t)=cl(t+ )+ Yyct+ t);

where R (t) and c;(t) are the atomic positions of particle | and the Kohn{Sham
orbital i at time t respectively. Here, F, are the forceson atom I, and f; are the
forceson Kohn{Sham orbital i. The matrices X and Y are directly related to the
Lagrange multipliers by

2
L (232)
2 !

t
Yij = 2— :]/ . (233)

Notice that in the rattle algorithm the Lagrange multipliers to enforcethe or-
thonormality for the positions P and velocities Y are treated as independert
variables. Denoting with C the matrix of wavefunction coe cien ts ¢;(G), the or-
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thonormality constraint can be written as

CY(t + ytr)]C(t+ b 1=0 (234)

C+XC C+XC 1=0 (235)

CYC+ XCYC+ CYCXY+ XXY 1=0 (236)

XXY+XB +BYXY=1 A ; (237)

where the new matrices Aj = €/(t+ t)g(t+ t)andBj = c/(t)g (t+ t) have

beenintroduced in Eq. (237). The unit matrix is denoted by the symbol I. By
noting that A = | + O( t?) and B = | + O( t), Eq. (237) can be solved iterativ ely
using

1h
x () = 5 | A+xMa B)
2
+( BYXMmM xm (238)
and starting from the initial guess
1
X = S A (239)

In Eqg. (238) it has beenmade use of the fact that the matrices X and B are real
and symmetric, which follows directly from their de nitions. Eq. (238) can usually
be iterated to a tolerance of 10 © within a few iterations.

The rotation matrix Y is calculated from the orthogonality condition on the
orbital velocities

c(t+ t)g(t+ t)+c/(t+ t)gt+ t)=0: (240)

Applying Eq. (240) to the trial states C°+ YC yields a simple equation for Y
Y= 2Q+Q) (241)

whereQj = c/(t+ t)cQ?(t+ t). The fact that Y canbe obtained without iteration
meansthat the velocity constraint condition Eq. (240) is satis ed exactly at eath
time step.

3.7.2 Advaned Techniques

One advantage of the velocity Verlet integrator is that it can be easily combined
with multiple time scalealgorithms 636:63% and still results in reversible dynamics.
The most successfulimplementation of a multiple time scale stheme in connec-
tion with the plane wave{pseudomtential method is the harmonic referencesystem
idea?’1:639, The high frequencymotion of the plane waveswith large kinetic energy
is used as a referencesystem for the integration. The dynamics of this reference
systemis harmonic and can be integrated analytically. In addition, this canbe com-
bined with the basic notion of a preconditioner already introduced in the section
on optimizations. The electronic massusedin the Car{P arrinello sthemeis a cti-

tious construct (seeSect. 2.4, Eq. (45)) and it is allowedto generalizethe idea by
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introducing di erent massesfor di erent "classical" degreesof freedom 473:610:639,
In agreemen with the preconditioner introduced in the optimization section, the
new plane wave dependent massesare

H(G,;G)

©)= (= y@e2+V(G:G) H(G:G) ;

(242)
whereH and V are the matrix elemerts of the Kohn{Sham matrix and the poten-
tial respectively. The referenceelectron massis and the parameter hasbeen
introduced beforein Eq. (208) asHg..c.. With the preconditioned massesand
the harmonic referencesystem, the equations of motion of the systemare

X
(G)6(G)=  (G)a(G)+ (G)+  G(G) : (243)
i
where (G) is the force on orbital!) i minus (G). From Eqg. (243) it is easy
to seethat the frequencies! (G) = (G)= (G) are independert of G and that
there is only one harmonic frequency equalto =~ = . The revised formulas for
the integration of the equationsof motion for the velocity Verlet algorithm can be
found in the literature 639,

The implications of the G vector dependent massescan be seenby revisiting
the formulas for the characteristic frequenciesof the electronic system Egs. (52),
(53), and (54). The masses are chosensud that all frequencies! j are approxi-
mately the same,thus optimizing both, adiabaticity and maximal time step. The
disadvantage of this method is that the averageelectron massseenby the nuclei is
drastically enhanced,leading to renormalization corrections > on the massesM;
that are signi cantly higher than in the standard approad and not as simple to
estimate by an analytical expression.

3.7.3 Geometrical Constraints

Geometrical constraints are used in classicalsimulations to freezefast degreesof
freedomin order to allow for larger time steps. Mainly distance constraints are
usedfor instanceto x intramolecular covalent bonds. Thesetype of applications
of constraints is of lesserimportance in ab initio molecular dynamics. Howewer, in
the simulation of rare everts sud as many reactions, constraints play an important
role together with the method of thermodynamic integration 217, The "blue{mo on"
ensenble method 15:589 enablesoneto compute the potential of mean force. This
potential can be obtained directly from the averageforce of constraint and a geo-
metric correction term during a molecular dynamics simulation as follows:

_ z 2 o @ cond: .
F(2) F(1)= d” — ; (244)
) @
where F is the free energyand (r) a one{dimensionalreaction coordinate, H the
Hamiltonian of the systemand h i°3"d‘ the conditioned averagein the constraint
ensenble °%°. By way of the blue moon ensenble, the statistical averageis replaced
by a time averageover a constrainedtrajectory with the reaction coordinate xed
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at special values, (R) = °, and (R;R) = 0. The quartity to evaluate is the
mean force

gF Z [ +keTG]

F) = Z 1= ] ' (245)
where is the Lagrange multiplier of the constraint,
X 2
Z= 1 @ ; (246)

M @R,
and
1 X 1 @ @ @

= . 7
G 22 MM;@®R @RAR; @R, ’ (247)

1;J

whereh i , is the unconditioned average,asdirectly obtained from a constrained
molecular dynamics run with (R) = %and
z
’ d Od_F
d 0

nally de nes the free energydi erence. For the special caseof a simple distance
constraint (R) = jR; R;jj the parameterZ is a constart and G = 0.

The rattle algorithm, allows for the calculation of the Lagrange multiplier of
arbitrary constraints on geometricalvariableswithin the velocity Verlet integrator.
The following algorithm is implemented in the CPMRode. The constraints are
de ned by

F(2) F(1)= (248)

1

OER (1)g) =0 ; (249)

and the velocity Verlet algorithm can be performed with the following steps.

Ry = Ry (t) + ﬁﬁ ()
Ri =Ri()+ tRy
2
Ri(t+ t)= R, + ﬁgp(t)

calculate F(t+ t)

Ry + —tF|(t+ t)

R_O
! 2M,

RO+ = gy(t+ 1) ;

R, (t+ t) oM,

where the constraint forcesare de ned by
X @W(fRI(1)g)

p= P (250)
X [
o=~ @09 (251)
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The Lagrange multiplier have to be determined to ensurethat the constraint on
the positions and velocities are exactly ful lled at the end of the time step. For the
position, the constraint condition is

OER, (t+ t)g)=0: (252)

Eqg. (252) is in generala system of nonlinear equationsin the Lagrange multipliers

,. Theseequations can be solved using a generalizedNewton algorithm “9* that
can be combined with a cornvergenceaccelerationschemebasedon the direct inver-
sion in the iterativ e subspacemethod 4%°:144, The error vectors for a given set of
Lagrange multipliers  are calculated from

X :
e()= J;it) V() (253)
j

The JacobianJ is de ned by

(i)
5()= 25 (254)
X @WO)ari()

= > 2

S ®(O) @ (259)
t2 C C .

= Mf' ()P ©) ; (256)
where f¢( ) =, '"@®=@,. Typically only a few iterations are neededto

corvergethe Lagrange multipliers to an accuracyof 1 10 8.

The constraint condition for the velocities can be cast into a system of linear
equations. Again, asin the caseof the orthonormality constraints in the Car{
Parrinello method, the Lagrangemultiplier for the velocity update canbe calculated
exactly without making use of an iterativ e scheme. De ning the derivative matrix

Ay = : 257
il @RI ( )
the velocity constraints are

D@+ =0 (258)

X @
—R; =0 259
| @?L | (259)

X X ¢2 ' X

—Aj Aj| JV = Aj R_0| . (260)

: 2M,
J I I

The only information neededto implement anewtype of constraint arethe formulas
for the functional value and its derivative with respect to the nuclear coordinates
involved in the constraint.
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3.7.4 Using Car-Parrinel lo Dynamics for Optimizations

By adding a friction term, Car{P arrinello molecular dynamics can be turned into
a damped secondorder dynamics scheme (seealso Sect. 2.4.6).

The friction can be applied both to the nuclear degreesof freedom and the
electronic coordinates. The resulting dynamics equation are a powerful method to
simultaneously optimize the atomic structure and the Kohn{Sham orbitals 472:610,
Harmonic referencesystemintegration and plane wave dependert electron masses,
introduced above, are especially helpful in this context, asthe derived dynamics
doesnot have a direct physical relevance.

Introducing afriction forceproportional to the constarts , and . the equations
of motion canreadily be integrated using the velocity Verlet algorithm. The friction
terms translate into a simple rescalingof the velocities at the beginning and end of
the time step accordingto

Ri(t) = nRi(1)

ci(t) = eCi(t)
VELOCITY VERLETUPDATE
Ri(t+ t)= Ri(t+ 1)
ci(t+ t)= eCi(t+ t):

It was showvn 472:810 that this scheme leadsto optimizations that are competitiv e
with other methods described in Sect. 3.6

3.8 Data Structures and Computational Kernels

In the practical implementation of the method, mathematical symbols have to
be translated into data structures of the computer language. Then mathematical
formulas are set into computer code using the data structures. The layout of the
data structures should be sud that optimal performancefor the algorithms can be
adhieved. The CPMDode is written in for tran77 and in the following sectionsthe
most important data structures and computational kernelswill be givenin pseudo
code form. The following variables are used to denote quartities that measure

systemsize.
N at number of atoms
Np number of projectors
Np number of electronic bands or states
N pw number of plane-waves
Np number of plane-wavesfor densitiesand potertials
Nx, Ny, N; number of grid points in X, y, and z direction

N = NxNyN; total number of grid points

In Table 3 the relativ e sizeof this variablesare given for two systems. The example
for a silicon crystal assumesan energycuto of 13 Rydberg and s non-locality for
the pseudomtential. In the example of a water system the numbers are given per
molecule. The cuto usedwas 70 Rydberg and the oxygen pseudoptertial hasa s
nonlocal part, the hydrogen pseudoptential is local.

76



Table 3. Relativ e size of characteristic variables in a plane wave calculation . Seetext for details.

silicon | water

Nat 1 3
Np 1 1
Np 2 4

Npw 53 1000
Np 429 8000
N 1728 | 31250

3.8.1 CPMIProgram: Data Structures

Important quartities in the pseudomtential plane{wave method depend either not
at all, linearly, or quadratically on the systemsize. Examplesfor the rst kind of
data are the unit cell matrix h andthe cuto E, . Variableswith a sizethat grows
linearly with the systemare

r3, Nat) nuclear positions
v(3, Na) nuclear velocities
f(3, Nat) nuclear forces
0(3, Npw) plane{wave indices

ipg(3, Npw) mapping of G{v ectors (positive part)
img(3, Npw) mapping of G{v ectors (negative part)
rhog( Npw ) densities(n, n¢, Nyt ) in Fourier{space
vpot( Npw ) potentials (Vioc, Vxec, Vi) in Fourier{space
N(Ny, Ny, N;) densities(n, n¢, Nyt ) in real{space
V(Nyx, Ny, N;) potentials (Vioc, Vxe, VH) in real{space

vps(Np) local pseudomtential
rpc( Np) core charges
pro( Npw ) projectors of non-local pseudomtential.

The pseudomtertial related quartities vps, rpc, and pro are one{dimensionalin
system size but also depend on the number of di erent atomic species. In the
following it is assumedthat this is one. It is easyto generalizethe pseudocodes
given to more than one atomic species. For real quantities that depend on G{
vectorsonly half of the valueshave to be stored. The other half can be recomputed
when neededby using the symmetry relation

A(G)=A’( G) : (261)

This savesa factor of two in memory. In addition G vectors are stored in a linear
array, instead of a three-dimensionalstructure. This allowsto store only non{zero
variables. Becausethere is a spherical cuto, another reduction of a factor of two
is achieved for the memory. For the Fourier transforms the variables have to be
prepared in a three-dimensional array. The mapping of the linear array to this
structure is provided by the information stored in the arrays ipg and img.

Most of the memory is neededfor the storageof quantities that grow quadratically
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with systemsize.

eigr( Np,Na)  structure factors

fnl( Np, Np) overlap of projectors and bands
dfinl( N,, Np,3)  derivative of fnl

smat(Np, Np) overlap matrices between bands
cr( Npw , Np) bandsin Fourier space

cV(Npw, Np) velocity of bandsin Fourier space
cf( Npw, Np) forcesof bandsin Fourier space

In order to save memory it is possibleto store the structure factors only for the
G vectors of the wave function basis or even not to store them at all. Howewer,
this requiresthat the missing structure factors are recomputed wheneer needed.
The structure factors eigr and the wavefunction related quartities cr, cv, cf are
complex numbers. Other quartities, like the local pseudomtertial vps, the core
chargesrpc, and the projectors pro can be stored as real numbers if the factor
( i)' is excluded.

3.8.2 CPMIProgram: Computational Kernels

Most of the calculationsin a plane wave code are donein only a few kernelroutines.
These routines are given in this section using a pseudo code language. Where
possiblean implemertation using basiclinear algebra(blas ) routines is given. The
rst kernel is the calculation of the structure factors. The exponertial function of
the structure factor separatesin three parts along the directions sy; sy; s;.

MODULBEtructureFactor
FORIi=1: Ny
s(1:3) =2 * Pl * MATMUL[htm1(2:3:3) ,r(1: 3,i)]
dp(1:3) = CMPLX[COS[s(1:3)], SIN[s (1:3) ]]
dm(1:3) = CONJG[dp(1:3)]
e(0,1:3,) =1
FORK=1: gmax
e(k,1:3,i) = e(k-1,1:3,i) * dp
e(-k,1:3,i) = e(-k+1,1:3,i) * dm
END
FORj=0: Np
eigr() = e(g(1.).1.0) * e(9(2,).2,) * e(9(3,).3,)
END
END

In the module above htm1 is the matrix (h') 1. One of the mostimportant calcu-
lation is the inner product of two vectorsin Fourier space.This kernel appearsfor
examplein the calculation of energies

X

e=  A’(G)B(G) : (262)
G

Making useof the fact that both functions are real the sum can be restricted to half
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of the G vectors, and only real operations have to be performed. Approximately a
factor of three in operations can be save this way. Special care hasto be taken for
the zero G vector. It is assumedthat this plane wave componert is stored in the
rst position of the arrays.

MODULBotProduct
e = A1) * B(1)
FORi=2: Np
ar = REAL(A())
ai = IMAG(A())
br = REAL(B(i))
bi = IMAG(B(i))
e=e+2* (ar * br +ai * bi
END

This loop structure is available in the blas library, optimized on most computer
architectures. To usethe blas routines for real variables, complex numbers have
to be stored astwo real numbersin cortiguous memory locations.

e =A(1) * B(l) +2* sdot2 * Np - 2,A(2),1,B(2),1)

The calculation of overlap matrices between sets of vectors in real spaceis a im-
portant task in the orthogonalization step

X
S = A7(G)Bj(G) : (263)
G

It can be executedby using matrix multiply routines from the blas library. The
special caseof the zero G vector is handled by a routine that performs a rank 1
update of the nal matrix.

MODULBverlap
CALLSGEMM('T''N', Np, Np,2* Npw ,2,&

& ca(1,1),2* Npw,cb(1,1),2* Npw ,0,smat, Nyp)
CALLSDERNy, Np,-1,ca(1,1),2*  Npw,cb(1,1),2* Npw,smat, Np)

For a symmetric overlap additional time can be saved by using the symmetric
matrix multiply routine. The overlap routines scalelike N2Npy . It is therefore
very important to have an implementation of these parts that performs closeto
peek performance.

MODULBymmetricOverla p
CALLSSYRK('U','T', Np,2* Npw ,2,ca(1,1),2* Npw,0,smat, Nyp)
CALLSDERNp, Np,-1,ca(1,1),2*  Npw,cb(1,1),2* Npw,smat, Np)

Another operation that scalesasthe overlap matrix calculations is the rotation of
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a set of wavefunctionsin Fourier space

X
Bi(G)=  A(G)S: (264)
i
Again this kernel can be executedby using the optimized blas matrix multiply
routines.

MODULRotation
CALLSGEMM('N','N",2* Npw, Ny, Np,1,ca(1,1),2* Npw,&
& smat, Np,0,cb(1,1),2*  Npw)

The overlap calculation of the projectors of the nonlinear pseudomtential with
the wavefunctions in Fourier spacescalesas NpN,Npw . As the projectors are
stored as real quartities, the imaginary prefactor and the structure factor have
to be applied before the inner product can be calculated. The following pseudo
code calculatesM projectors at a time, making use of the special structure of the
prefactor. This allows againto do all calculations with real quartities. The code
assumesthat the total number of projectors is a multiple of M. A generalization
of the code to other casesis straightforward. By using batches of projectors the
overlap can be calculated using matrix multiplies. The variable Ip(i) holds the
angular momertum of projector i.

MODULENL
FORi=1: Np,M
IF (MOD(Ip(i),2) ==0) THEN
FORj=0:M-1
pf = -1**(Ip(i+))/2)
FORk:].:NpW
t = prok) * pf
er = REAL[eigr(k,iat(i+ )]
ei = IMAG[eigr(k,iat(i+ )]

scr(k,j) = CMPLX[t* ert * eil
END
END
ELSE
FORj=0:M-1
pf = -1*(Ip(i+))/2+1 )
FORk:].:NpW
t = prok) * pf
er = REAL[eigr(k,iat(i+ )]
ei = IMAG[eigr(k,iat(i+ )]
scr(k,j) = CMPLX[-t* eit * er]
END
END
ENDIF

scr(1,0:M-1) = scr(1,0:M-1)/2
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CALLSGEMM(T'N'M, Np,2* Npw ,2,&
& scr(1,0),2*  Npw,cr(1,1),2*  Npw,0fli1),  Np)
END

Fourier transform routines are assumedto work on complex data and return
alsoarrays with complex numbers. The transform of data with the density cuto is
shown in the next two pseudocode sections. It is assumedthat a three dimensional
fast Fourier transform routine exists. This is in fact the caseon most computers
where optimized scierti ¢ libraries are available. The next two pseudocode seg-
ments show the transform of the charge density from Fourier spaceto real space
and bad.

MODULBNVFFT

scr(l: Ny,1: Ny,1: N;) =0

FORIi=1: Np
scr(ipg(,i),ipg(2, ),ip 9(3, 1) = rhog(i)
scr(img(1,i),img(2, i),im g(3,i) = CONJG|rhog(i)]

END
CALLFFT3D("INV",scr)
n(1: Ny,1: Ny,1: N;) = REAL[scr(1: Ny,1: Ny,1: Ny)]

MODULEWFFT
scr(l: Ny,1: Ny,1: N;z) = n(1: Ny,1: Ny,1: Np)
CALLFFT3D("FW",scr)
FORIi=1: Np

rhog(i) = scr(ipg(1,i).ipg(2 A0 pg3, i)
END

Special kernelsare preserted for the calculation of the density and the application
of the local potential. These are the implementation of the ow charts shown in
Fig. 8. The operation count of theseroutines is Ny N log[N]. In most applications
theseroutines take most of the computer time. Only for the biggest applications
possible on todays computers the cubic scaling of the orthogonalization and the
nonlocal pseudomtential becomedominant. A small prefactor and the optimized
implemertation of the overlap are the reasonsfor this.

In the Fourier transforms of the wavefunction two properties are usedto speed
up the calculation. First, becausethe wavefunctionsare real two transforms can be
done at the sametime, and second,the smaller cuto of the wavefunctions can be
usedto avoid someparts of the transforms. The use of the sparsity in the Fourier
transforms is not shawn in the following modules. In an actual implemertation a
maskwill be generatedand only transforms allowed by this maskwill be executed.
Under optimal circumstancesa gain of almost a factor of two can be achieved.
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MODULPBensity
rho(1: Ny,1: Ny,1: N;) =0
FORIi=1: Ny,2
scr(l: Ny,1: Ny,1: N;) =0
FORJ:]. N pw
scr(ipg(L,i),ip g(2,i ),ipg (3,)) ) = c(,) + 1 * c(j,i+1)
scr(img(l1,i),im  g(2,i ),img (3,i)) ) = CONJG[c(j,i) + | * c(j,i+1)]
END
CALLFFT3D("INV",scr)
rho(1: Ny,1: Ny,1: N;) = rho(1: Ny,1: Ny,1: N;) + &
& REAL[scr(1: Ny,1: Ny,1: N2  + IMAGI[scr(1: Ny,1: Ny,1: Np)J**2
END

MODULEPSI
FORi=1: Np,2
scr(l: Ny,1: Ny,1: N;) =0
FORJ:]. N pw
scr(ipg(Li)ip  9(2i )ipg (3.0) ) =c@i) + 1 * c(jitl)
scr(img(l1,i),im  g(2,i ),img (3,i)) ) = CONJG[c(j,i) + | * c(j,i+1)]
END
CALLFFT3D("INV",scr)
scr(l: Ny,1: Ny,1: N;) = scr(l: Ny,1: Ny,1: N;) * &
& vpot(l: Ny,1: Ny,1: Ny)
CALLFFT3D("FW",scr)
FORJ:]. Npw
FP = scr(ipg(1,i),ip g(2,i )jipg (3) ) &
& + scr(img(1,i),img(2, i),i mg(3,i)
FM= scr(ipg(1,i),ip g(2,i )jipg (3) ) &
& - scr(img(1,i),img(2, i),i mg(3,i)

fc(ii) = f() * CMPLX[REAL[FP],IMB[FN]
fc(,i+1) = f(i+1) * CMPLX[IMAG[FP],-REL[FM]
END

END

3.9 Parallel Computing
3.9.1 Intr oduction

Ab initio molecular dynamics calculation needlarge computer resources.Memory
and cpu time requiremert make it necessaryto run projects on the biggest com-
puters available. It is exclusively parallel computers that provide theseresources
today. There are many di erent types of parallel computers available. Comput-
ersdier in their memory accesssystemand their communication system. Widely
di erent performancesare seenfor bandwidth and latency. In addition, dierent
programming paradigms are supported. In order to have a portable code that can
be usedon most of the current computer architectures, CPM®vas programmed us-
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ing standard communication libraries and making no assumption on the topology
of the processornetwork and memory accesssystem.

Minimizing the communication was the major goal in the implementation of
the parallel plane wave code in CPMDTherefore, the algorithms had to be adapted
to the distributed data model chosen. The most important decisionsconcernthe
data distribution of the largestarrays in the calculation. Thesearrays are the ones
holding information on the wavefunctions. Three distribution strategies can be
ervisagedand were usedbefore 90:137;687,688,117

First, the data are distributed over the bands 7. Each processorholds all
expansion coe cien ts of an electronic band locally. Seeral problems arise with
this choice. The number of bandsis usually of the samemagnitude as the number
of processors. This leadsto a sewere load-balancing problem that can only be
avoided for certain magic numbers, namely if the number of bands is a multiple
of the number of cpu's. Furthermore this approad requires to perform three-
dimensional Fourier transforms locally. The memory requiremerts for the Fourier
transform only increaselinearly with systemsize,but their prefactor is very big and
a distribution of thesearrays is desirable. In addition, all parts of the program that
do not contain loopsover the number of bandshaveto be parallelized using another
stheme, leading to additional communication and syndronization overhead.

Second, the data is distributed over the Fourier space componerts and the
real spacegrid is also distributed °%:137:117  This scheme allows for a straight
forward parallelization of all parts of the programthat involveloopsover the Fourier
componerts or the real spacegrid. Only a few routines are not covered by this
stheme. The disadvantage is that all three-dimensional Fourier transforms require
communication.

Third, it is possibleto use a combination of the above two schemes®8. This
leadsto the most complicated scheme, as only a careful arrangemert of algorithms
avoids the disadvantagesof the other shemeswhile still keepingtheir advantages.

Additionally , it is possibleto distribute the loop over k{p oints. As most calcu-
lation only usea limited number of k{p oints or evenonly the {p oint, this method
is of limited use. Howewer, combining the distribution of the k-points with one of
the other method mentioned above might result in a very e cien t approac.

The CPMProgram is parallelized using the distribution in Fourier and real space.
The data distribution is held xed during a calculation, i.e. static load balancing
is used. In all parts of the program wherethe distribution of the plane wavesdoes
not apply, an additional parallelization over the number of atoms or bandsis used.
Howevwer, the data structures involved are replicated on all processors.

A specialsituation existsfor the caseof path integral calculations (seeSect.4.4),
where an inherert parallelization over the Trotter slicesis presen. The problem is
"embarrassinglyparallel" in this variable and perfect parallelism can be obsened on
all typesof computers, even on clusters of workstations or supercomputers("meta{
computing"). In practice the parallelization over the Trotter sliceswill be combined
with one of the schemesmentioned above, allowing for good results even on mas-
sively parallel machineswith seweral hundred processors.
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3.9.2 CPMIProgram: Data Structures

In addition to the variables usedin the serial version, local copieshave to be de-
ned. Theselocal variableswill beindexedby a superscript indicating the processor
number. The total number of processords P. Each processothasa certain number
of plane waves,atoms, electronic bands and real spacegrid points assigned.

NE number of atoms on processorp

NP number of projectors on processorp

Ny number of electronic bands or states on processorp

NS number of plane-waveson processorp

NP number of plane-wavesfor densitiesand potentials on processorp

D
NP, Ny, N, number of grid points in X, y, and z direction on processorp
NP=NPNyN, total humber of grid points on processorp

The real spacegrid is only distributed over the x coordinates. This decision is
related to the performanceof the Fourier transform that will be discussedn more
detail in the following sections. The distribution algorithm for atoms, projectors
and bandsjust divides the total number of thesequartities in equal junks basedon
their arbitrary numbering. The algorithms that use these parallelization schemes
do not play a major role in the overall performanceof the program (at least for the
systemsaccessiblewith the computers available today) and small imperfectionsin
load balancing can be ignored.

Data structures that are replicated on all processors:

r(3, Nat) nuclear positions
v(3, Na) nuclear velocities
f(3, Nat) nuclear forces

fnl( Np, Np) overlap of projectors and bands
smat(Np, Np)  overlap matrices between bands.

Data structures that are distributed over all processors:

g3, N5,) plane{wave indices

ipg(3, Njy) mapping of G{v ectors (positive part)
img(3, N&\,) mapping of G{v ectors (negative part)
rhog( NJ\y ) densities(n, Nn¢, Ny ) in Fourier{space
vpot( NJy,) potentials (Vioc, Vie, VH) in Fourier{space
n(NP, Ny, N;) densities(n, n¢, Ny ) in real{space
V(NP, Ny, N;) potentials (Vioc, Ve, VH) in real{space
vps(NpB) local pseudomtential

rpc( N§) core charges

pro( NPy, ) projectors of non-local pseudoptential

eigr( N5, Ng)  structure factors
dfnl( Np, NP,3)  derivative of fnl

cr( Ny » Np) bandsin Fourier space
cv(NBy, s Np) velocity of bandsin Fourier space
cf( NSy » Np) forcesof bandsin Fourier space.

Seweral di erent goals should be achieved in the distribution of the plane waves
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over processors. All processorsshould hold approximately the same number of
plane waves. If a plane wave for the wavefunction cuto is on a certain processor,
the sameplane wave should be on the sameprocessorfor the density cuto. The
distribution of the plane waves should be suc that at the beginning or end of a
three dimensional Fourier transform no additional communication is needed. To
achieve all of these goalsthe following heuristic algorithm 137 is used. The plane
wavesare ordered into "p encils". Each pencil holds all plane waveswith the same
gy and g, componerts. The pencils are numbered according to the total number
of plane waves that are part of it. Pencils are distributed over processorsin a
“round robin" fashion switching directions after ead round. This is rst done for
the wavefunction cuto . For the density cuto the distribution is carried over, and
all new pencils are distributed accordingto the samealgorithm. Experienceshows
that this algorithm leadsto good results for the load balancing on both levels, the
total number of plane wavesand the total number of pencils. The number of pencils
on a processotis proportional to the work for the rst stepin the three-dimensional
Fourier transform.

Special care has to be taken for the processorthat holds the G = 0 componert.

This componert hasto be treated individually in the calculation of the overlaps.
The processorthat holds this componenrt will be called pO.

3.9.3 CPMIProgram: Computational Kernels

There are three communication routines mostly usedin the parallelization of the
CPMDode. All of them are collective communication routines, meaning that all
processorsare involved. This alsoimplies that syndironization stepsare performed
during the execution of theseroutines. Occasionallyother communication routines
have to be used (e.g. in the output routines for the collection of data) but they
do not appear in the basic computational kernels. The three routines are the
Broadcast, GlobalSum and MatrixTranspose . In the Broadcast routine data is
sendfrom one processor(px) to all other processors

xP o xPx o (265)

In the GlobalSumroutine a data item is replacedon eat processorby the sum over
this quantity on all processors N
xP xP (266)
p
The MatrixTranspose changesthe distribution pattern of a matrix, e.g. from row
distribution to column distribution

x(p;:)  x(:5p) (267)
On a parallel computer with P processorsa typical latency time t_ (time for the

rst data to arrive) and a bandwidth of B, the time spend in the communication
routines is

Broadcast log,[P]ft. + N=Bg
GlobalSum log,[P]ft. + N=Bg
MatrixTranspose Pt + N=(PB)
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Table 4. Distribution of plane waves and "p encils" in parallel runs on dieren t numbers of pro-
cessors. Example for a cubic box with a volume of 6479.0979bohr3 and a 70 Rydb erg cuto  for
the wavefunctions. This is the simulation box needed for 32 water molecules at normal pressure.

wavefunction cuto
PE plane waves pencils
max min max min
1| 32043 32043| 1933 1933
2| 16030 16013 967 966
4 8016 8006 | 484 482
8 4011 4000 | 242 240
16 2013 1996 | 122 119
32 1009 994 62 59
64 507 495 32 29
128 256 245 16 14

density cuto
PE plane waves pencils
max min max min

256034 256034| 7721 7721
128043 127991 3859 3862
64022 63972 1932 1929
32013 31976| 966 964
16| 16011 15971 484 482
32 8011 7966 | 242 240
64 4011 3992 122 119
128 2006 1996 62 59

O~ NPE

where it is assumedthat the amount of data N is constart. The time needed
in Broadcast and GlobalSumwill increasewith the logarithm of the number of
processorsinvolved. The time for the matrix transposition scalesfor one part
linearly with the number of processors.Once this part is small, then the latency
part will be dominant and increaselinearly. Besidesload balancing problems, the
communication routines will limit the maximum speedupthat can be achieved on
a parallel computer for a given problem size. Exampleswill be shown in the last
part of this section.

With the distribution of the data structures given, the parallelization of the com-
putational kernelsis in most caseseasy In the StructureFactor and Rotation
routines the loop over the plane wavesNp hasto be replacedby NJ. The routines
performing inner products have to be adapted for the G = 0 term and the global
summation of the nal result.

MODULBotProduct
IF (p == P0) THEN

ab = A(l) * B(1) +2 * sdot(2 * (N) 1),A(2),1,B(2),1)
ELSE
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ab = 2 * sdot(2 * NJ,A(1),1,B(1),1)
ENDIF
CALL GlobalSum[ab]

MODULBverlap
CALLSGEMM(T''N', Np, Np,2* N5, ,2,&
& ca(1,1),2* Np,, .cb(1,1),2* Np, ,0,smat, Np)
IF (p == PO) CALLSDERNp, Np,-1,ca(1,1),2* Np, .&
& cb(1,1),2* NPp,, ,smat, Np)
CALL GlobalSum[smat]

Similarly, the overlap part of the FNLroutine has to be changed and the loops
restricted to the local number of plane waves.

MODULENL
FORi=1: Np,M
IF (MOD(Ip(i),2) ==0) THEN
FORj=0:M-1
pf = -1**(Ip(i+))/2)
FORk=1:NJ,,
t = prok) * pf
er = REAL[eigr(k,iat(i+ )]
ei = IMAG[eigr(k,iat(i+ )]

scr(k,j) = CMPLX[t* ert * eil
END
END
ELSE
FORj=0:M-1
pf = -1**(Ip(i+j)/2+1 )
FORk=1:NJ,,

t = prok) * pf
er = REAL[eigr(k.iat(i+  j))]
ei = IMAG[eigr(k,iat(i+ j))]
scr(k,j) = CMPLX[-t * eit * er]
END
END
ENDIF
IF (p == PO0) scr(1,0:M-1) = scr(1,0:M-1)/2
CALLSGEMM(T''N',M, Np,2* NS, ,2,&
& scr(1,0),2* NS, cr(1,1),2  NJ,, ,0,fnl(i,1), Np)
END
CALL GlobalSum[fnl]

The routines that needthe most changesare the oncethat include Fourier trans-

forms. Due to the complicated break up of the plane wavesa new mapping has to
be introduced. The map mapxyensuresthat all pencils occupy cortiguous memory
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locations on ead processor.

MODULBNVFFT

scri(l: Nyl Noye) =0

FORi=1: N}
scri(ipg(d,i),mapxy  (ipg( 2,i) ,ipg( 3.,)) ) = rhog(i)
scri(img(l,i),mapxy (img( 2,i) ,img( 3,i)) ) = CONJG[rhog(i)]

END
CALLParallelFFT3D("IN V",sc rl1,sc r2)
n(1: N2,1: Ny,1: N;) = REAL[scr2(1: N2,1: Ny,1: N;)]

MODULEWFFT

scr2(1: NJ2,1: Ny,1: N;) = n(1: NP,1: Ny,1: Ny)

CALL ParallelFFT3D("FW ",scr 1,scr 2)

FORi=1: N}

ENE)hog(i) = scrl(ipg(l,i)mapx  y(ipg (2,i) .ipg( 3.)) )

Due to the mapping of the y and z direction in Fourier spaceonto a singledimension,
input and output array of the parallel Fourier transform do have di erent shapes.

MODULPBensity
rho(1: NP,1: Ny,1: N;) =0
FORIi=1: Nj,2
scrl(l: Ny,1: NJJ,) =0
FORj=1: NJ,,
scri(ipg(d,i)m  apxy(ipg(2 )i pg@3, 1)) =&
& c(,i) + 1 * c(,i+1)
scri(img(l,i),m apxy(img(2,)),i mg(3,i))) =&

& CONJG[c(j,i) + | * c(j,i+1)]
END
CALL ParallelFFT3D("INV" ,scr 1,scr 2)
rho(1: NP,1: Ny,1: N;) = rho(1: NP,1: Ny,1: N;) + &
& REAL[scr2(1: N2,1: Ny,1: N)]¥*2 + &
& IMAG[scr2(1: NP,1: Ny,1: Ny)**2

END
MODULEPSI
FORIi=1: Np,2
scri(l: Ny,1: NJd) =0
FORj=1: NJ,,
scri(ipg(Li),m  apxy(ipg(2 .i)i pg(3, 1)) =&
&c(,i)y +1 * c(ji+l)
scri(img(l,i),m apxy(img(2,)),i mg(3,i))) =&

& CONJG[c(,) + | * c(j,i+1)]
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END
CALL ParallelFFT3D("INV" ,scr 1,scr 2)
scr2(1: Nf2,1: Ny,1: N;) = scr2(l: NP,1: Ny,1: N;) * &
& vpot(l: NP,1: Ny,1: Ny)
CALL ParallelFFT3D("FW", scrl,scr2 )
FORj=1: Nj,,
FP = scrl(ipg(1,i),m apxy(ipg(2 ,),i pg(3,)) &
& + scrl(img(1,i),mapxy (img(2,i) ,img( 3,i)) )
FM= scrl(ipg(1,i),m apxy(ipg(2 ,)),i pg(3,)) &
& - scrl(img(1,i),mapxy (img(2,i) ,img( 3,))) )

fc(ii) = f() * CMPLX[REAL[FP],IMB[FN]
fc(j,i+1) = f(i+1) * CMPLX[IMAG[FP],-REL[FM]
END

END

The parallel Fourier transform routine canbe built from a multiple one-dimensional
Fourier transform and a parallel matrix transpose. As mertioned above, only one
dimension of the real spacegrid is distributed in the CPMRode. This allows to

combine the transforms in y and z direction to a seriesof two-dimensionaltrans-
forms. The handling of the plane wavesin Fourier spacebreaksthe symmetry and
two di erent transposeroutines are needed,depending on the direction. All the
communication is donein the routine ParallelTranspose . This routine consists
of a part wherethe coe cien ts are gatheredinto matrix form, the parallel matrix

transpose, and a nal part where the coe cien ts are put badk according to the
mapping used.

MODULParallelFFT3D(t ag,a, b)

IF (tag == "INV") THEN
CALLMLTFFT1D(a)
CALL ParallelTranspose(" INV",b,a)
CALLMLTFFT2D(b)

ELSE
CALLMLTFFT2D(b)
CALL ParallelTranspose(" FW"b,a)
CALLMLTFFT1D(a)

ENDIF

All other parts of the program usethe samepatterns for the parallelization asthe
onesshawn in this section.

3.9.4 Limitations

Two typesof limitations canbe encourtered whentrying to run a parallel codeon a
computer. Increasingthe number of processorsvorking on a problem will no longer
lead to a faster calculation or the memory available is not su cient to perform a
calculation, independerily on the number of processorsavailable. The rst type of
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Figure 13. Maximal theoretical speedup for a calculation with a real spacegrid of dimension 100
(solid line). E ectiv e speedup for a 32 water molecule system with an energy cuto of 70 Rydb erg
and a real spacegrid of dimension 100 (dotted line with diamonds)

limitation is related to bad load-balancingor the computation becomesdominated
by the non-scalingpart of the communication routines. Load{balancing problems
in the CPM[Bode are almost exclusiwely due to the distribution of the real space
arrays. Only the x coordinate is distributed. There are typically of the order of
100grid points in ead direction. Figure 13 shavsthe maximal theoretical speedup
for a calculation with a real spacegrid of dimension100. The stepsare due to the
load{balancing problemsinitiated by the granularity of the problem (the dimension
is an integer value). No further speedup can be achieved once 100 processorsare
reached. The secondcurvein Fig. 13shaws actual calculations of the full CPMBbode.
It is clearly shown that the load balancing problem in the Fourier transforms a ects
the performanceof this special example. Where this stepsappear and how sewere
the performancelossesare depends of courseon the system under consideration.
To overcomethis limitation a method basedon processorgroups has beenim-
plemerted into the code. For the two mostimportant routines wherethe real space
grid load{balancing problem appears,the calculation of the charge density and the
application of the local potenrtial, a secondlevel of parallelism is introduced. The
processorsare arrangedinto a two-dimensionalgrid and groupsare build according
to the row and column indices. Each processoris a member of its column group
(colgrp ) andits row group (rowgrp). In a rst step a data exchangein the column
group assuresthat all the data neededto perform Fourier transforms within the
row groups are available. Then ead row group performs the Fourier transforms
independertly and in the end another data excdhangein the column groupsrebuilds
the original data distribution. This scheme (shown in the pseudocode for the den-
sity calculation) needsroughly double the amount of communication. Advantages
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are the improved load{balancing for the Fourier transforms and the bigger data
packagesin the matrix transposes. The number of plane wavesin the row groups
(NJ, ) is calculated as the sum over all local plane wavesin the correspnding
column groups.

MODULPBensity

rho(1: NP ,1: Ny,1: N;) =0

FORIi=1: Np,2*Pc
CALL ParallelTranspose(c  (.,i ),col grp)
scri(l: Ny, 1: NJd.,) =0
FORj=1: N},

scrl(ipg(l,i),m  apxy(ipg(2 ,i),i pg(3, 1)) =&
& c(,i) + 1 * c(,i+1)
scrl(img(l,i),m apxy(img(2,),i mg(3,i))) =&

& CONJG[c(j,i) + | * c(j,i+1)]
END
CALL ParallelFFT3D("INV" ,scr 1,scr 2,rowgrp)
rho(1: NP, 1: Ny,1: N;) = rho(l: N/",1: Ny,1: N;) + &
& REAL[scr2(1: N2,1: Ny,1: N)]¥*2 + &
& IMAG[scr2(1: N2,1: Ny,1: N,)]**2
END
CALL GlobalSum(rho,col grp)

The useof two task groupsin the exampleshown in Fig. 13 leadsto an increaseof
speedupfor 256 processordrom 120to 184 on a Cray T3E/600 computer.

The e ect of the non-scalability of the global communication usedin CPMDs
shown in Fig. 14. This example shaws the perceriage of time usedin the global
communication routines (global sums and broadcasts) and the time spend in the
parallel Fourier transforms for a system of 64 silicon atoms with a energycuto of
12 Rydberg. It canclearly be seenthat the global sumsand broadcastsdo not scale
and therefore becomemore important the more processorsare used. The Fourier
transforms on the other hand scale nicely for this range of processors. Where
the communication becomesdominant depends on the size of the systemand the
performanceratio of communication to cpu.

Finally, the memory available on ead processommay becomea bottlenedk for large
computations. The replicated data approac for somearrays adapted in the im-
plemertation of the code poseslimits on the systemsizethat can be processedon
a given type of computer. In the outline givenin this chapter there are two types
of arrays that scale quadratically in system size that a replicated. The overlap
matrix of the projectors with the wavefunctions (fnl ) and the overlap matrices of
the wavefunctions themsehes (smat). The fnl matrix is involvedin two types of
calculations where the parallel loop goes either over the bands or the projectors.
To avoid communication, two copiesof the array are kept on ead processor.Each
copy holds the data neededin one of the distribution patterns. This shemeneeds
only a small adaptation of the code described above.

The distribution of the overlap matrices (smat) causessome more problems. In
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Figure 14. Percentage of total cpu time spend in global communication routines (solid line) and
in Fourier transform routines (dashed line) for a system of 64 silicon atoms on a Cray T3E/600
computer.

addition to the adaptation of the overlap routine, alsothe matrix multiply routines
neededfor the orthogonalization step have to be donein parallel. Although there
are libraries for these tasks available the complexity of the code is considerably
increased.

3.9.5 Summary

E cien t parallel algorithms for the plane wave{pseudoptential density functional
theory method exist. Implementations of these algorithms are available and were
used in most of the large scale applications preserted at the end of this paper
(Sect.5). Depending on the sizeof the problem, excellert speedupscan be achieved
even on computerswith seweral hundreds of processors.The limitations preserted
in the last paragraph are of importance for high{end applications. Together with
the extensionspreserted, existing plane wave codesare well suited alsofor the next
generation of supercomputers.

4 Adv anced Techniques: Beyond :::

4.1 Intr oduction

The discussionup to this point revolved essetially around the \basic" ab initio
molecular dynamics methodologies. This meansin particular that classial nuclei
ewlve in the electronic ground state in the microcanonical ensenble. This com-
bination allows already a multitude of applications, but many circumstancesexist
where the underlying approximations are unsatisfactory. Among these casesare
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situations where

it is necessaryto keeptemperature and /or pressureconstart (sudch asduring
journeys in phasediagramsor in the investigation of solid{state phasetransi-
tions),

there is a su cien t population of excited electronic states (such asin materials
with a small or vanishingelectronic gap) or dynamical motion occursin a single
excited states (such as after photoexcitation everts),

light nuclei are involved in crucial steps of a process(such as in studies of
proton transfer or muonium impurities).

In the following subsectionstechniques are introduced which transcedetheselimi-

tations. Thus, the realm of ab initio molecular dynamics is considerablyincreased
beyond the basic setup as discussedin generalterms in Sect. 2 and concerning
its implementation in Sect. 3. The presented \advancedtechniques" are selected
becausethey are available in the current version of the CPMPpadkage 142, but their

implementation is not discussedn detail here.

4.2 Beyond Micr ocanonics
4.2.1 Introduction

In the framework of statistical medanics all ensenbles can be formally obtained
from the microcanonicalor NV E ensenble { where particle nhumber, volume and
energy are the external thermodynamic cortrol variables { by suitable Laplace
transforms of its partition function; note that V is usedfor volume whenit comes
to labeling the various ensenbles in Sect. 4 and its subsections. Thermodynam-
ically this correspnds to Legendretransforms of the assaiated thermodynamic
potentials where intensive and extensive conjugate variables are interchanged. In

thermodynamics, this task is achieved by a \su cien tly weak" coupling of the
original systemto an appropriate in nitely large bath or resenoir via a link that

establishesthermodynamic equilibrium. The same basic idea is instrumental in

generating distribution functions of sud ensenbles by computer simulation 98:250,
Here, two important special casesare discussed:thermostats and barostats, which

are used to impose temperature instead of energy and / or pressureinstead of
volume as external cortrol parameters 12:445:270:585:217,

4.2.2 Imposing Temperature: Thermostats

In the limit of ergadic sampling the ensenble createdby standard moleculardynam-
ics is the microcanonicalor NV E ensenble wherein addition the total momertum
is consened 12:279:217 Thys, the temperature is not a cortrol variable in the New-
tonian approad to molecular dynamics and whenceit cannot be preselectedand
xed. But it is evidert that alsowithin molecular dynamics the possibility to con-
trol the averagetemperature (as obtained from the averagekinetic energy of the
nuclei and the energy equipartition theorem) is welcomefor physical reasons. A
deterministic algorithm of achieving temperature cortrol in the spirit of extended
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systemdynamics# by a sort of dynamical friction medanism was devisedby Nose
and Hoover 442:443:444307 " seee.g. Refs. 12:449:270:585:217 for reviews of this well{
establishedtechnique. Thereby, the canonical or NVT ensenble is generatedin
the caseof ergadic dynamics.

As discussedin depth in Sect. 2.4, the Car{P arrinello approad to ab initio
molecular dynamics works due to a dynamical separation between the physical
and ctitious temperatures of the nuclear and electronic subsystems,respectively.
This separability and thusthe asseiated metastability condition breaksdown if the
electronic excitation gapbecomescomparableto the thermal energyor smaller, that
is in particular for metallic systems. In order to satisfy neverthelessadiabaticity in
the senseof Car and Parrinello it wasproposedto coupleseparatethermostats 583 to
the classical elds that stem from the electronic degreesof freedom 74294, Finally,
the (long{term) stability of the molecular dynamics propagation can be increased
due to the samemedanism, which enablesoneto increasethe time step that still
allows for adiabatic time ewolution ®38. Note that thesetechnical reasonsto include
additional thermostats are by construction absert from any Born{Opp enheimer
molecular dynamics scheme.

It iswell{known that the standard Nose{Hoover thermostat method su ers from
non{ergodicity problemsfor certain classesof Hamiltonians, such asthe harmonic
oscillator %7, A closely related technique, the so{called Nose{Hoover{chain ther-
mostat 38, curesthat problem and assuresergadic sampling of phase spaceeven
for the pathological harmonic oscillator. This is achieved by thermostatting the
original thermostat by another thermostat, which in turn is thermostatted and so
on. In addition to restoring ergadicity even with only a few thermostats in the
chain, this technique is found to be much more e cient in imposing the desired
temperature.

Nose{Hoover{chain thermostatted Car{P arrinello molecular dynamics was in-
troducedin Ref. ¢, The underlying equations of motion read

MR = |EKS M, 2R (268)
" #
M|R_|2 ngT QT_]:_g
h' i
Qi = QF ;2 ksT Qla++1 (1 k) wherek=2:::;K
for the nuclear part and X
= HES i+ i 1+ (269)
" ij
XCC
2 hijii Te Qi
i

1
Qfey= QF, 72, - Qi1 (@ ) wherel=2:::;L

Q1"

Qi*1

for the electronic cortribution. Theseequations are written down in density func-
tional language (see Eq. (75) and Eq. (81) for the de nitions of EXS and HKS,
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respectively), but completely analoguesexpressionsare operational if other elec-
tronic structure approadesare usedinstead. Using separatethermostatting baths
f kg and f g, chains composedof K and L coupled thermostats are attached to
the nuclear and electronic equations of motion, respectively.

By inspection of Eq. (268) it becomesntuitiv ely clear how the thermostat works:
4 can be consideredas a dynamical friction coe cien t. The resulting \dissipativ e
dynamics" leadsto non{Hamiltonian o w, but the friction term can aquire positive
or negative sign according to its equation of motion. This leads to damping or
accelerationof the nuclei and thus to cooling or heating if the instantaneouskinetic
energy of the nuclei is higher or lower than kg T which is preset. As a result,
this extended system dynamics can be shovn to produce a canonical ensenble
in the subspaceof the nuclear coordinates and momerta. In spite of being non{
Hamiltonian, Nose{Hoover ({chain) dynamics is also distinguished by conserving
an energy quartit y of the extended system, seeEq. (272).

The desiredaveragephysical temperature is givenby T and g denotesthe num-
ber of dynamical degreesof freedomto which the nuclear thermostat chain is cou-
pled (i.e. constraints imposedon the nuclei have to be subtracted). Similarly, T? is
the desired ctitious kinetic energy of the electronsand 1= . is the assaiated tem-
perature. In principle, e should be chosensud that 1= o = 2T9=N, where N¢ is
the number of dynamical degreesof freedomneededto parameterizethe wavefunc-
tion minusthe number of constraint conditions. It is found that this choicerequires
a very accurateintegration of the resulting equationsof motion (for instanceby us-
ing a high{order Suzuki{Y oshidaintegrator, seeSect. VI.A in Ref. 63). Howewer,
relevant quartities are rather insensitive to the particular value sothat N can be
replacedheuristically by N2 which is the number of orbitals ; usedto expandthe
wavefunction 638,

The choice of the \mass parameters" assignedto the thermostat degreesof
freedomshould be made sud that the overlap of their power spectra and the ones
the thermostatted subsystemsis maximal "4:63%, The relations

ke T ke T
Q=8 Q=7

2T
Ql= 7 Qr =
e

: (270)
n
1

| 2
e- e

®Po N

(271)

assureghis if ! , is a typical phonon or vibrational frequencyof the nuclear subsys-
tem (say of the order of 2000to 4000cm ?!) and ! ¢ is su cien tly large compared
to the maximum frequency! M of the nuclear power spectrum (say 10 000cm *
or larger). The integration of these equations of motion is discussedin detail in
Ref. 538 using the velocity Verlet / rattle algorithm.

In someinstances,for example during equilibration runs, it is advantageousto
go one step further and to actually couple one chain of Nose{Hoover thermostats
to ewvery individual nuclear degreeof freedomakin to what is donein path integral
molecular dynamics simulations 637:644:646  seealso Sect. 4.4. This so{called \mas-
sive thermostatting approac” is found to accelerate considerably the expensive
equilibration periods within ab initio molecular dynamics, which is useful for both
Car{P arrinello and Born{Opp enheimerdynamics.

95



In classicalmolecular dynamics two quartities are consened during a simula-
tion, the total energy and the total momertum. The same constarts of motion
apply to (exact) microcanonical Born{Opp enheimer molecular dynamics because
the only dynamical variables are the nuclear positions and momerta as in classi-
cal molecular dynamics. In microcanonical Car{P arrinello molecular dynamics the
total energy of the extendel dynamical system composedof nuclear and electronic
positions and momerta, that is E¢ons asde ned in Eg. (48), is also consened, see
e.g. Fig. 3in Sect.2.4. There is alsoa consened energyquartit y in the caseof ther-
mostatted molecular dynamics according to Eq. (268){(269). Instead of Eq. (48)
this constart of motion reads

xee D E X

1
Econs = 4+t SMIRF+ESF gfRg]
i |
X 1 e 2 X | 0
+ éQI it —+ 2Te 1
I=1 =2 ©
1
+ EQE§+ keT k + gk T 1 (272)
k=1 k=2

for Nose{Hoover{chain thermostatted canonical Car{P arrinello molecular dynam-
H 638
ics °%°.

In microcanonical Car{P arrinello molecular dynamicsthe total nuclear momen-
tum P, is no more a constart of motion asa result of the ctitious dynamicsof the
wavefunction; this quantity aswell as other symmetries and assiated invariants
are discussedn Ref. 467, Howewer, a generalizedinear momertum which embraces
the electronic degreesof freedom

X xee D E
Pep = P+ Pe= P, + 4+ Iy | +cc (273)

can be de ned #6743, p; = M|R,. This quartity is a constart of motion in
unthermostatted Car{P arrinello moleculardynamicsdueto an exact cancellation of
the nuclear and electronic cortributions 467:4%6_ As aresult, the nuclear momertum
P, uctuates during sud a run, but in practice P, is consened on the averageas
shown in Fig. 1 of Ref. 43, This is analoguesto the behavior of the physical total
energyEpnys EQ. (49), which uctuates slightly due to the presenceof the ctitious

kinetic energy of the electronsTe Eq. (51).

As recerily outlined in detail it is clear that the coupling of more than one
thermostat to a dynamical system, such as donein Eq. (268){(269), destroys the
consenation of momertum 43, i.e. Pcp is no more an invariant. In unfavorable
cases,in particular in small{gap or metallic regimeswhere there is a substartial
coupling of the nuclear and electronic subsystems,momertum can be transferred
to the nuclear subsystemsud that P, grows in the courseof a simulation. This
problem can be cured by cortrolling the nuclear momertum (using e.g. scaling or
constraint methods) sothat the total nuclear momertum P, remains small 43¢,
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4.2.3 Imposing Pressue: Barostats

Keepingthe pressureconstart is a desirablefeature for many applications of molec-
ular dynamics. The conceptof barostats and thus constart{pressure molecular dy-
namicswasintroducedin the framework of extendedsystemdynamicsby Hans An-

dersen'?, seee.g. Refs,12:270:585:217 for intro ductions. This method was devisedto
allow for isotropic uctuations in the volume of the supercell. A powerful extension
consistsin alsoallowing for changesof the shape of the supercell to occur asa result
of applying external pressure?%:460:461:678 'inclyding the possibility of non{isotropic

external stress#°; the additional ctitious degreesof freedomin the Parrinello{

Rahman approach 4°9:460:461 gre the lattice vectors of the supercell, whereasthe
strain tensor is the dynamical variable in the Wertzcovitch approad 678, These
variable{cell approaces make it possibleto study dynamically structural phase
transitions in solids at nite temperatures. With the birth of ab initio molecu-
lar dynamics both approades were combined starting out with isotropic volume
uctuations °* a la Andersen * and followed by Born{Opp enheimer 681:682 and
Car{P arrinello 201:202:55:56 yariable{cell techniques.

The basic idea to allow for changesin the cell shape consistsin constructing
an extended Lagrangian where the primitiv e Bravais lattice vectorsa;, a; and as
of the simulation cell are additional dynamical variables similar to the thermostat
degreeof freedom , seeEq. (268). Using the 3 3 matrix h = [a1;ay; asz] (which
fully de nes the cell with volume ) the real{spaceposition R, of a particle in this
original cell can be expressedas

R| = hS| (274)

where S, is a scaled coordinate with componerts S;., 2 [0; 1] that de nes the
position of the I'th particle in a unit cube (i.e. unit = 1) which is the scaled
cell 459460 seeSect. 3.1 for somede nitions. The resulting metric tensor G= hth
corverts distances measuredin scaled coordinates to distances as given by the
original coordinates accordingto Eq. (106) and periodic boundary conditions are
applied using Eg. (107).

In the caseof ab initio molecular dynamics the orbitals have to be expressed
suitably in the scaledcoordinates s= h *r. The normalized original orbitals ;(r)
asde ned in the unscaledcell h are transformed accordingto

i(r) = 191: i () (@75)

satisfyin
fying . .

dr 7(r) i()=ds 7(s) i(s) (276)

sothat the resulting charge density is given by
n(r) = 1 n(s) : 277)

in the scaledcell, i.e. the unit cube. Importantly, the scaled elds ;(s) and thus
their charge density n(s) do not depend on the dynamical variables assaiated to
the cell degreesof freedomand thus can be varied independerily from the cell; the
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original unscaled elds (r) do depend on the cell variablesh via the normalization
by the cell volume = deth asevidencedby Eg. (275).

After thesepreliminaries a variable{cell extendedLagrangianfor abinitio molec-
ular dynamics can be postulated 202:201:55

X D E
L= () =(s) EKS[f ig;fhS,q]
+ i (hi(s)js)i )
i
X 1 t 1 t .
+ §M| S|GS, + éW Trh'h p (278)

with additional nine dynamical degreesof freedomthat are assaiated to the lat-
tice vectors of the supercell h. This constarnt{pressure Lagrangian reducesto the
constart{v olume Car{P arrinello Lagrangian, seee.g. Eqg. (41) or Eq. (58), in the
limit h.! O of arigid cell (apart from a constart term p ). Here, p de nes the
externally applied hydrostatic pressure,W de nes the ctitious massor inertia pa-
rameter that cortrols the time{scale of the motion of the cell h and the interaction
energyEKS is of the form that is de ned in Eq. (75). In particular, this Lagrangian
allows for symmetry{breaking uctuations { which might be necessaryto drive
a solid{state phasetransformation { to take place spontaneously. The resulting
equations of motion read

x3 @G 1 X3 3 L
M S u = @® h vu M G\JV GVSS+;S (279)
v
v=1 ! v=1 s=1
EKS X
*i(s) = W + j i j(s) (280)
X tot t 1
Why = os Pus ht (281)
s=1
where the total internal stresstensor
1 X
;== M OSIGS + s (282)

| us

is the sum of the thermal cortribution due to nuclear motion at nite temperature
and the electronic stress tensor 449441 which is de ned in Eq. (189) and the
following equations, seeSect. 3.4.

Similar to the thermostat casediscussedin the previous section one can rec-
ognize a sort of frictional feedba& medanism. The averageinternal pressure
hN1=3) Tr i equalsthe externally applied pressurep as a result of maintain-
ing dynamically a balance betweenp and the instantaneousinternal stress ©!
by virtue of the friction coe cient / Gin Eq. (279). Ergodic trajectories obtained
from solving the assaiated ab initio equations of motion Eq. (279){(281) lead to
a sampling accordingto the isobaric{isoenthalpic or N pH ensenble. Howewer, the
generateddynamicsis ctitious similar to the constart{temp erature casediscussed
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in the previous section. The isobaric{isothermal or N pT ensenble is obtained by
combining barostats and thermostats, seeRef. 39 for a general formulation and
Ref. 31 for reversible integration schemes.

An important practical issuein isobaric ab initio molecular dynamics simula-
tions is related to problems causedby using a nite basis set, i.e. \incomplete{
basis{set" or Pulay{t ype contributions to the stress, seealso Sect. 2.5. Using a
nite plane wave basis(together with a nite number of k{p oints) in the presence
of a uctuating cell 245211 one can either x the number of plane wavesor x the
energy cuto; seeEq. (122) for their relation according to a rule{of{th umb. A
constart humber of plane wavesimplies no Pulay stressbut a decreasingprecision
of the calculation asthe volume of the supercellincreaseswhenceleadingto a sys-
tematically biased (but smooth) equation of state. The constart cuto procedure
hasbetter corvergenceproperties towards the in nite{basis{set limit 245, Howewer,
it producesin generalunphysical discortin uities in the total energyand thusin the
equation of state at volumeswhere the number of plane waves changesabruptly,
seee.g. Fig. 5in Ref. 211,

Computationally, the number of plane waveshasto be xed in the framework
of Car{P arrinello variable{cell molecular dynamics 94:292:201:55 \yhereasthe energy
cuto can easily be kept constart in Born{Opp enheimer approadesto variable{
cell molecular dynamics #1682 Sticking to the Car{P arrinello technique a practical
remedy 29255 to this problem consistsin modifying the electronic kinetic energy
term Eg. (173) in a plane wave expansionEq. (172) of the Kohn{Sham functional
EXS Eq. (75)

X X1 _ .,
Bun = i 5IGI"ja(a)” ; (283)
i q
wherethe unscaledG and scaledq = 2 g reciprocal lattice vectorsare interrelated
via the cell h accordingto Eq. (111) (thus Gr = gs) and the cuto Eq. (121)
is de ned as (1=2) jGj? Ecu for a xed number of q{vectors, see Sect. 3.1.
The modi ed kinetic energyat the {p oint of the Brillouin zoneassiated to the
supercell reads
X X
Euin = fi

2
G A E& ic(@)? (284)
q
( . #)
G A Eg 2:jc3j2+A 1+ erf 7181 Bl

cut

NI =

(285)

whereA, andES, arepositivede nite constarts and the number of scaledvectors
g, that is the number of plane waves, is strictly kept xed.

In the limit of a vanishing smoothing (A'! 0; ! 1) the constart number of
plane wave result is recovered. In limit of a sharp step function (A! 1; ! 0)
all plane waves with (1=2) jGj? E&,; have a negligible weight in Ey, and are
thus e ectiv ely suppressed.This situation mimics a constart cuto calculation at
an\e ectiv ecuto " of Eg, within aconstart number of plane wave scheme. For
this trick to work note that E¢,x  Eg,; hasto be satis ed. In the caseA > 0 the
electronic stresstensor  given by Eq. (189) features an additional term (due to
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changesin the \e ectiv e basisset" asa result of variations of the supercell), which
is related to the Pulay stress?19:660,

Finally, the strength of the smoothing A > 0 should be kept as modest as possi-
ble sincethe modi cation Eg. (284) of the kinetic energyleadsto an increaseof the
highest frequencyin the electronic power spectrum / A. This implies a decrease
of the permissible molecular dynamics time step t™® accordingto Eq. (55). It
is found that a suitably tuned set of the additional parameters(A; ;ES,) leads
to an e cien tly corverging constart{pressure schemein conjunction with a fairly
small number of plane waves 2°2:°%, Note that the cuto was kept strictly con-
stant in applications of the Born{Opp enheimerimplementation 67° of variable{cell
molecular dynamics %1682 put the smoothing scheme presenied here could be
implemented in this caseaswell. An e cient method to correct for the discortin u-
ities of static total energy calculations performed at constart cuto was proposed
in Ref. 211, Evidently, the bestway to deal with the incomplete{basis{set problem
is to increasethe cuto sud that the resulting artifacts becomenegligible on the
physically relevant energyscale.

4.3 Beyond Ground States
4.3.1 Introduction

Extending abinitio molecular dynamicsto a single non{interacting excited state is
straightforward in the framework of wavefunction{based methods such as Hartree{
Fock 365;254;191;379;281;284;316;293' generalizedvalencebond (GVB) 282;283;228;229;230'
complete active space SCF (CASSCF) °66:567 or full con guration interaction
(FCI) 372 approades, seeSect. 2.7. However, these methods are computationally
quite demanding { given presert{day algorithms and hardware. Promising steps
in the direction of including seeral excited states and non{adiabatic couplingsare
alsomade 385;386;387;71_

Density functional theory o ers an alternativ e route to approximately solving
electronic structure problems and recert approadies to excited{state properties
within this framework look promising. In the following, two limiting and thus
certainly idealistic situations will be considered,which are characterized by either

many closely{spacedexcited electronic stateswith a broad thermal distribution
of fractional occupation numbers, or by

a single electronic state that is completely decoupled from all other states.

The rst situation is encountered for metallic systemswith collective excitations or
for materials at high temperatures comparedto the Fermi temperature. It is noted
in passingthat assaiating fractional occupation numbersto one{particle orbitals is
alsooneroute to go beyond a single{determinant ansatzfor constructing the charge
density 458168 The secondcaseappliesfor instanceto large{gap molecular systems
which complete a chemical reaction in a single excited state as a result of e.g. a
vertical homo / lumo or instantaneousone{particle / one{hole photoexcitation.
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4.3.2 Many Excited States: Free Energy Functional

The free energy functional approad to excited{state molecular dynamics >7 is a
mean{ eld approad similar in spirit to Ehrenfestmolecular dynamics, seeSect.2.2.
The total wavefunction is rst factorized into a nuclear and an electronic wave-
function Eq. (3) followed by taking the classicallimit for the nuclear subsystem.
Thus, classicalnuclei move in the average eld asobtained from averagingover all
electronic states Eq. (25). A dierence is that according to Ehrenfest molecular
dynamicsthe electronsare propagatedin real time and can perform non{adiabatic
transitions by virtue of direct coupling terms / d*' betweenall states  subject
to energyconsenation, seeSect. 2.2 and in particular Eqgs. (27){(29). The average
force or Ehrenfestforce is obtained by weighting the di erent statesk accordingto
their diagonal density matrix elemers (that is/ jcc(t)j? in Eq. (27)) whereasthe
coherert transitions are driven by the o {diagonal cortributions (which are/ c]c,
seeEq. (27)).

In the free energy approach %7, the excited states are populated according to
the Fermi{Dirac ( nite{temp erature equilibrium) distribution which is based on
the assumption that the electrons\equilibrate” more rapidly than the timescale
of the nuclear motion. This meansthat the set of electronic states ewlvesat a
given temperature \isothermally” (rather than adiabatically) under the inclusion
of incoherent electronic transitions at the nuclei move. Thus, instead of comput-
ing the force acting on the nuclei from the electronic ground{state energy it is
obtained from the electronic free energy as de ned in the canonical ensenble. By
allowing sudc electronic transitions to occur the free energy approad transcends
the usual Born{Opp enheimer approximation. Howewer, the approximation of an
instantaneous equilibration of the electronic subsystemimplies that the electronic
structure at a givennuclearcon guration f R g is completelyindependert from pre-
vious con gurations alonga moleculardynamicstrajectory. Dueto this assumption
the notion \free energy Born{Opp enheimerapproximation" was coinedin Ref. 101
in a similar context. Certain non{equilibrium situations can alsobe modeledwithin
the free energy approac by starting o with an initial orbital occupation pattern
that doesnot correspnd to any temperature in its thermodynamic meaning, see
e.g. Refs, 570:572:574 for such applications.

The free energy functional asde ned in Ref. ® is introduced most elegarly ’:°
by starting the discussionfor the special caseof nor{in teracting Fermions

_ 1, Xz
Hs= 5 | R T (286)
in a xed external potential due to a collection of nuclei at positionsfR,;g. The
asseiated grand partition function and its thermodynamic potential (\grand free
energy") are given by

S(VT)=det? 1+ exp[ (Hs ) (287)
s(VT)= keTIn ((VT); (288)

where is the chemical potential acting on the electrons and the square of the
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determinant stemsfrom consideringthe spin{unpolarized special caseonly. This
reducesto the well{known grand potential expression

= 2kgT In 1+ exp Q) (289)

for non{interacting spin{1/2 Fermions where f é')g are the eigervalues of a one{
particle Hamiltonian sud as Eq. (286); here the standard identity IndetM =
TrinM wasinvoked for positive de nite M.

According to thermodynamics the Helmholtz free energy F (NV T) assaiated
to Eqg. (288) can be obtained from an appropriate Legendretransformation of the
grand freeenergy ( V T)

2,2,

X
Fs(NVT) = VT)+ N + —_

1<J

(290)

by xing the averagenumber of electronsN and determining from the corven-
tional thermodynamic condition

N = — : 2901
@ @
In addition, the internuclear Coulomb interactions betweenthe classicalnuclei were
included at this stagein Eq. (290). Thus, derivativesof the free energy Eq. (290)
with respect to ionic positions r | Fs de ne forceson the nuclei that could be used
in a (hypothetical) molecular dynamics stheme using non{in teracting electrons.
The interactions between the electrons can be \switc hed on" by resorting to
Kohn{Sham density functional theory and the concept of a non{interacting refer-
encesystem. Thus, instead of using the simple one{particle Hamiltonian Eq. (286)
the e ective Kohn{Sham Hamiltonian Eq. (83) hasto be utilized. As a result, the
grand free energy Eqg. (287) can be written as

KS(V T)= 2kgTIn det 1+ exp HKS (292)
1 X z [n]
KS _— 2 | XC
= = — 2
H 5" R + Vy(r) + "G) (293)
HKS = (294)

where . is the exchange{correlation functional at nite temperature. By virtue of
Eg. (289) one canimmediately seethat kS is nothing elsethan the \F ermi{Dirac

weighted sum” of the bare Kohn{Sham eigervaluesf ;g. Whence, this term is the
extensionto nite temperatures of the \band{structure energy" (or of the \sum

of orbital energies"in the analoguesHartree{Fock case®°4418) cortribution to the
total electronic energy seeEq. (86).

In order to obtain the correct total electronic free energy of the interacting

electronsasde ned in Eq. (86) the correspnding extra terms (properly generalized
to nite temperatures) haveto beincludedin XS. This nally allowsoneto write
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down the generalization of the Helmholtz free energy of the interacting many{
electron case

KS —  KS z Z\Z;
FKS(NVT) = (V T)+ dr n(r) + ——
o IR Ryj
2 V4 ”
> dar Va(r) n(r) + dr %n(r) (295)

in the framework of a Kohn{Sham({lik e formulation. The correspnding one{
particle density at the {p oint is)given by

n)= fi()ji) (296)
|
fi()=@+expl (i D" (297)
where the fractional occupation numbersff;g are obtained from the Fermi{Dirac
distribution at temperature T in terms of the Kohn{Sham eigervaluesf ;g. Finally,
ab initio forcescan be obtained as usual from the nuclear gradiert of F XS, which
makes molecular dynamics possible.

By construction, the total free energy Eq. (295) reducesto that of the non{
interacting toy model Eq. (290) once the electron{electron interaction is switched
0. Another useful limit is the ground{state limit ! 1 where the free energy
FXS(NVT) yields the standard Kohn{Sham total energy expressionEKS as de-
ned in Eqg. (86) after invoking the appropriate limit . ! Exc asT ! 0. Most
importantly, stability analysis®’ of Eq. (295) shavs that this functional sharesthe
samestationary point asthe exact nite{temp erature functional dueto Mermin 424,
seee.qg. the textb ooks 4°8:168 for intro ductions to density functional formalisms at
nite temperatures. This implies that the self{consistert density, which de nes
the stationary point of FXS, is identical to the exact one. This analysis reveals
furthermore that, unfortunately, this stationary point is not an extremum but a
saddle point so that no variational principle and, numerically speaking, no direct
minimization algorithms can be applied. For the samereasona Car{P arrinello
ctitious dynamics approad to molecular dynamics is not a straightforward op-
tion, whereasBorn{Opp enheimer dynamics basedon diagonalization can be used
directly.

The band{structure energy term is ewaluated in the CPM[package #? by di-
agonalizing the Kohn{Sham Hamiltonian after a suitable \preconditioning" °, see
Sect. 3.6.2. Speci cally, a sg(cond{orderTrot'g%r approximation is used

Trexp HS = exp[ i]= i () (298)
i ( i .
=Tr ep — o 2 exp A
L ) I'p
exp —  5f 2 +0 3 (299)
X X
fal )= fexpl g (300)
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in order to compute rst the diagonal elemerts j () of the \high{temp erature"
Boltzmann operator ( ); here = =P and P is the Trotter \time slice" as
introducedin paragraph Ab Initio Path Integrals: Statics. To this end, the kinetic
and potential energiescanbe conveniertly evaluated in reciprocal and real space re-
spectively, by usingthe split{op erator/ FFT technique 83, The Kohn{Sham eigen-
values ; are nally obtained from the density matrix via i = (1= )In ;( ).
They are usedin order to compute the occupation numbersff;g, the density n(r),
the band{structure energy S, and thus the free energy Eq. (295).

In practice a diagonalization / density{mixing sdiemeis employed in order to
compute the self{consistent density n(r). Grossly speaking a suitably constructed
trial input density n;, (seee.g.the Appendix of Ref. >’ for sud a method) is used
in order to compute the potential V*S[nj,]. Then the lowest{order approximant
to the Boltzmann operator Eqg. (300) is diagonalized using an iterativ e Lanczos{
type method. This yields an output density noy: and the correspnding free energy
FKS[neyu]. Finally, the densitiesare mixed and the former stepsare iterated until a
stationary solution ngs of F KS[ng] is achieved, seeSect. 3.6.4for somedetails on
sud methods. Of coursethe most time{consuming part of the calculation is in the
iterativ e diagonalization. In principle this is not required, and it should be possible
to compute the output density directly from the Fermi{Dirac density matrix even
in a linear scaling scheme 243, thus circumverting the explicit calculation of the
Kohn{Sham eigenstates. Howewer, to date e orts in this direction have failed, or
given methods which are too slow to be useful °.

As a method, molecular dynamics with the free energy functional is most ap-
propriate to use when the excitation gap is either small, or in caseswhere the
gap might closeduring a chemical transformation. In the latter caseno instabil-
ities are encourtered with this approad, which is not true for ground{state ab
initio  molecular dynamics methods. The price to pay is the quite demanding it-
erative computation of well{convergedforces. Besidesallowing sud applications
with physically relevant excitations this method can also be straightforwardly com-
bined with k{point sampling and applied to metals at \zero" temperature. In
this case,the electronic \temp erature" is only used as a smearing parameter of
the Fermi edgeby introducing fractional occupation numbers, which is known to
improve greatly the corvergenceof theseground{state electronic structure calcula-
tions 220;232;185;676;680;343;260;344;414;243_

Finite{temp erature expressiondor the exchange{correlation functional . are
available in the literature. Howewer, for most temperatures of interest the correc-
tions to the ground{state expressionare small and it seemsjusti ed to use one of
the various well{established parameterizations of the exchange{correlation energy
Eyxc at zerotemperature, seeSect. 2.7.

4.3.3 A Single Excited State: S;{Dynamics

For large{gap systemswith well separated electronic statesit might be desirable
to single out a particular state in order to allow the nuclei to move on the asso-
ciated excited state potential energy surface. Approachesthat rely on fractional
occupation numbers sud as ensenble density functional theories { including the
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free energy functional discussedin the previous section{ are di cult to adapt for
caseswherethe symmetry and/ or spin of the electronic state should be xed 18,
An early approad in order to selecta particular excited state was basedon intro-
ducing a \quadratic restoring potertial" which vanishesonly at the eigervalue of
the particular state 417111,

A method that combines Roothaan's symmetry{adapted wavefunctions with
Kohn{Sham density functional theory wasproposedin Ref. 2*4 and usedto simulate
a photoisomerizationvia molecular dynamics. Viewed from Kohn{Sham theory this
approad consistsin building up the spin density of an open{shell systembasedon
a symmetry{adapted wavefunction that is constructed from spin{restricted deter-
minants (the \microstates"). Viewed from the restricted open{shell Hartree{Fock
theory a la Roothaan it amounts essetially to replacing Hartree{Fock exchangeby
an approximate exchange{correlation density functional. This procedure leadsto
an orbital{dep endert density functional which was formulated explicitely for the
rst{excited singlet state S; in Ref. 214, The relation of this approac to previ-
oustheoriesis discussedn somedetail in Ref. 214, In particular, the succes®f the
closely{related Ziegler{Rauk{Baerends\sum methods" 704:150:600 wasan important
stimulus. More recerily seweral papers 252:439:193:195:196 gppearedthat are similar
in spirit to the method of Ref. 214, The approad of Refs. 193:195:196 can be viewed
asa generalization of the special case(S; state) worked out in Ref. 24 to arbitrary
spin states. In addition, the generalizedmethod 193195196 was derived within the
framework of density functional theory, whereasthe wavefunction perspective was
the starting point in Ref. 214,

In the following, the method is outlined with the focusto perform molecular
dynamicsin the S; state. Promoting oneelectron from the homo to the lumo in a
closed{shellsystemwith 2n electronsassignedo n doubly occupiedorbitals (that is
spin{restricted orbitals that have the samespatial part for both spinup and spin
down electrons)leadsto four di erent excited wavefunctionsor determinants, see
Fig. 15 for a sketch. Two statesjt;i and jt;i are energetically degeneratetriplets
t whereasthe two states jm;i and jm»i are not eigenfunctions of the total spin
operator and thus degeneratemixed states m (\spin contamination”). Note in
particular that the m statesdo not correspnd { asis well known { to singlet states
despite the suggestive occupation pattern in Fig. 15.

Howewer, suitable Clebsd{Gordon projections of the mixed states jmii and
jm2i yield another triplet state jtsi and the desired rst excited singlet or S; state
jsii. Here,the ansatz?'4 for the total energyof the S; state is given by

Es. [f idl= 2E5°[f ig] E{C[f id] (301)
where the energiesof the mixed and triplet determinants
z z
1
ENSIF ig] = Ts[n]+  dr Vex(r)n(r) + > dr Vi (r)n(r) + Exc[ny,;n,1(302)
z z

EfSIE ig] = Ts[n]+  dr Ve (r)n(r) + % dr Vi (r)n(r) + Exc[n, ;n,] (303)

are expressedin terms of (restricted) Kohn{Sham spin{density functionals con-
structed from the setf ;g, cf. Eq. (75). The asseiated S; wavefunction is given
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Figure 15. Four possible determinan ts jtii, jtzi, jm1i and jmai as a result of the promotion of a
single electron from the homo to the lumo of a closed shell system, seetext for further details.
Taken from Ref. 24,

by
jsiff igli = IOijm[f gl jtlf igli (304)

where the \microstates” m and t are both constructed from the samesetf ;g of
n + 1 spin{restricted orbitals. Using this particular set of orbitals the total density

n(r) = N (r) + np(r) = ne (r) + ne(r) (305)

is of courseidentical for both the m and t determinants whereastheir spin den-
sities clearly di er, seeFig. 16. Thus, the decisive di erence betweenthe m and
t functionals Eq. (302) and Eqg. (303), respectively, comesexclusively from the
exdhange{correlation functional E., whereaskinetic, external and Hartree energy
are identical by construction. Note that this basic philosophy can be generalized
to other spin{states by adapting suitably the microstates and the corresmpnding
coe cien ts in Eq. (301) and Eq. (304).

Having de ned a density functional for the rst excited singlet state the
correspnding Kohn{Sham equations are obtained by varying I%g (301) using
Eq. (302) and Eg. (303) subject to the orthonormality constraint ir;‘j’il j(hij

ji ij ). Following this procedurethe equation for the doubly occupied orbitals
i=1::5;n 1reads

%r 24 Vu(r) + Vex (r)
+ Ve [Ny (r);np (N1 + Vie [Ny (r); 0y ()]
wl

Wl 00 O] SVhelne Oinc O] (0= y (1) (308)
j=1
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Figure 16. Four patterns of spin densities n., n,, n,,, and ny corresponding to the two spin{
restricted determinan ts jti and jmi sketched in Fig. 15, seetext for further details. Taken from
Ref. 214,

whereas
h i
% %r 24 Vu(r) + Vex ()
1 Xt
+ Ve[ (r);np ()] évxc[nt (r);ng (] a(r) = a j(r), (307)
j=1
and
h i
% %r 24 Vu(r) + Vex ()
1 Xt
+ Voo [Ny (1) 0 ()] évxc[nt (r);ng (N o(r) = _ b j(r). (308)

i=1

are two di er ent equations for the two singly{o ccupied open{shell orbitals a and
b, respectively, see Fig. 15. Note that these Kohn{Sham{lik e equations fea-
ture an orbital{dep endent exdange{correlation potertial where V,.[n,;n,] =
Exc[Nm:Nnm]= N, and analoguesde nitions hold for the andt cases.

The set of equations Eq. (306){(308) could be solved by diagonalization of the
correspnding \restricted open{shell Kohn{Sham Hamiltonian" or alternativ ely by
direct minimization of the assaiated total energy functional. The algorithm pro-
posedin Ref. 24°, which allows to properly and e cien tly minimize sud orbital{
dependert functionals including the orthonormality constraints, was implemented
in the CPMPpadkage'4?. Basedon this minimization technique Born{Opp enheimer
molecular dynamics simulations can be performedin the rst excited singlet state.
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The alternative Car{P arrinello formulation seemsinconveniert becausethe singly
and doubly occupied orbitals would have to be constrained not to mix.

4.4 Beyond Classial Nuclei
4.4.1 Introduction

Up to this point the nuclei wereapproximated asclassicalpoint particles ascustom-
arily done in standard molecular dynamics. There are, however, many situations
where quantum dispersion broadeningand tunneling e ects play an important role
and cannot be neglectedif the simulation aims at being realistic { which is the
genericgoal of ab initio simulations. The ab initio path integral technique 3% and
its extensionto quasiclassicatime ewlution 4! is able to cope with sud situations
at nite temperatures. It is alsoimplemented in the CPMPadage 42, The certral
ideais to quartize the nuclei using Feynman's path integrals and at the sametime
to include the electronic degreesof freedomakin to abinitio molecular dynamics {
that is\on{the{y". The main ingredients and approximations underlying the ab
initio path integral approac 395:399:644:404 gre

the adiabatic separationof electronsand nuclei wherethe electronsare kept in
their ground state without any coupling to electronically excited states (Born{
Oppenheimeror \clamp ed{nuclei" approximation),

using a particular approximate electronic structure theory in order to calculate
the interactions,

approximating the cortin uouspath integral for the nucleiby a nite discretiza-
tion (Trotter factorization) and neglectingthe indistinguishabilit y of identical
nuclei (Boltzmann statistics), and

using nite supercellswith periodic boundary conditions and nite sampling
times ( nite{size and niteftime e ects) asusual.

Thus, quantum e ects sud as zero{point motion and tunneling aswell asthermal
uctuations areincluded at somepresettemperature without further simpli cations
consisting e.g. in quasiclassicalor quasiharmonic approximations, restricting the
Hilb ert space,or in arti cially reducing the dimensionality of the problem.

4.4.2 AbInitio Path Integrals: Statics

For the purposeof introducing ab initio path integrals 3% it is corveniert to start
directly with Feynman's formulation of quantum{statistical medanics in terms
of path integrals as opposedto Sdiredinger's formulation in terms of wavefunc-
tions which was usedin Sect. 2.1 in order to derive ab initio molecular dynamics.
For a generalintroduction to path integrals the readeris referredto standard text-
books 187:188:334 \whereastheir usein numerical simulations is discussedor instance
in Refs. 233;126;542;120;124;646;407_

The derivation of the expressiondor abinitio path integralsis basedon assuming
the non{relativistic standard Hamiltonian, seeEg. (2). The correspnding canoni-
cal partition function of a collection of interacting nuclei with positionsR = fR | g

108



and electronsr = fr;g can be written asa path integral

o 1o z #
Z= DR Drexp Y dLe fROGIR()GIn()gfn()g (309
0
where
Le=T(R)+V(R)+T(D+V(r)+ V(R;)
X Ly R FX @22,
| 2 d | <J jR| RJJ
X 2 X X
+ %me % + ¢ €7 ; (310)

, S LU ST B LAY

denotesthe Euclidean Lagrangian. The primesin Eg. (309) indicate that the proper
sums over all permutations correspnding to Bose{Einstein and/or Fermi{Dirac
statistics have to be included. It is important to note that in Eqg. (309) and (310)
the positionsf R, g andf r;g are not operators but simply functions of the imaginary
time 2 [0; ] which parameterizes uctuations around the classicalpath. This
implies that the dots denote here derivativeswith respect to imaginary time as
de ned in Eqg. (310). According to Eq. (309) exact quantum medianics at nite
temperature T = 1=kg is recoveredif all closedpaths [f R, g;fr;g] of \length"
aresummedup and weighted with the exponertial of the Euclideanaction measured
in units of ; atomic units will be used again from here on. The partial trace over
the electronic subsystemcan formally be written down exactly

I o Z #
Z= DRexp d T(R)+V(R) Z[R]; (311)
0
with the aid of the in uence functional 87:334 )
I o Z
Z[R]= Drexp d (T(r)+ V(r)+ V(R:r) (312)
0

Note that Z[R] is a complicated and unknown functional for a given nuclear path
con guration [fR g]. As a consequencéhe interactions betweenthe nuclei become
highly nonlocal in imaginary time due to memory e ects.

In the standard Born{Opp enheimer or \clamp ed nuclei" approximation, see
Ref. 340 for instance, the nuclei are frozenin somecon guration and the complete
electronic problem is solved for this single static con guration. In addition to the
nondiagonal correction terms that are already neglectedin the adiabatic approxi-
mation, the diagonal terms are now neglectedas well. Thus the potential for the
nuclear motion is simply de ned asthe bare electronic eigervaluesobtained from a
seriesof xed nuclear con gurations.

In the statistical medanics formulation of the problem Eq. (311){(312) the
Born{Opp enheimerapproximation amourts to a \quenched average": at imaginary
time the nuclei are frozen at a particular con guration R( ) and the electrons
explore their con guration spacesubject only to that single con guration. This
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implies that the electronic degreesof freedomat di erent imaginary times and °
becomecompletely decoupled. Thus, the in uence functional Z [R] hasto belocalin

and becomegparticularly simple; a discussionof adiabatic correctionsin the path
integral formulation can be found in Ref. 11, For ea the in uence functional
Z[R] is given by the partition function of the electronic subsystemevaluated for
the respective nuclear con guration R( ). Assumingthat the temperature is small
comparedto the gap in the electronic spectrum only the electronic ground state
with energy Eo (R( )) (obtained from solving Eqg. (20) without the internuclear
Coulomb repulsion term) is populated. This electronic ground state dominance
leadsto the following simple expression

7 #
Z[R]go = exp d Eo(R()) (313)
0
which yields the nal result
| "oz #
Zgo = DRexp d T(R)+ V(R)+ Eo(R) : (314)
0

Here nuclear exchangeis neglectedby assumingthat the nuclei are distinguishable
sothat they can be treated within Boltzmann statistics, which correspnds to the
Hartree approximation for the nuclear density matrix. The presenation given here
follows Ref. 3°° and alternativ e derivations were given in Sect. 2.3 of Refs. 1?4 and
in the appendix of Ref. 4?7, There, a wavefunction basis instead of the position
basisasin Eq. (312) wasformally usedin order to evaluate the in uence functional
due to the electrons.

The partition function Eg. (314) together with the Coulomb Hamiltonian Eq. (2)
leads after applying the lowest{order Trotter factorization 33 to the following dis-
cretized expression

#
Y W M, P 322
ZBO = Plllm 2|— deS)
TosFli=1
( )#
XX, e e 2, 1
exp é|\/||!P R® R +EE0 fR,g®  (315)
s=1 1=1

for the path integral with ! 3 = P= 2 Thus, the cortinuous parameter 2 [0; ]is

tion" = =P. The paths
n 0
fRig® = fRg®;:::fR P
= R(ll);:::;R(Nl);:::;R&P);:::;R&P) (316)
have to be closeddue to the trace condition, i.e. they are periodic in imaginary
time  which implies R, (0) R, ( ) and thus prﬂ) = Rl(l); the internuclear
Coulomb repulsion V (R) is now included in the de nition of the total electronic

energyEo. Note that Eq. (315) is an exact reformulation of Eq. (314) in the limit
of an in nitely ne discretization P! 1 of the paths.
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The e ectiv e classicalpartition function Eq. (315) with a xed discretization P
is isomorphic to that for N polymers eath comprisedby P monomers 233:126;120,
Eadch quantum degreeof freedomis found to be represerted by a ring polymer or
nedlace. The intrap olymeric interactions stem from the kinetic energy T(R) and
consist of harmonic nearest{neigtbor couplings/ ! p along the closedchain. The
interpolymeric interaction is given by the scaled potential E(()S):P which is only
evaluated for con gurations fR| g(® at the sameimaginary time slices.

In order to evaluate operators basedon an expressionlike Eq. (315) most nu-
merical path integral schemesutilize Metropolis Monte Carlo sampling with the
e ective potential(

)
xX X 2
Ve = MR R RED Ca lE 1R g (317)

s=1 =1

of the isomorphic classical system 233:126,542:120;124;,646;407  Molecular dynam-
ics techniques were also proposed in order to sample con guration space, see
Refs, 99:490:462;501:273 for pjoneeringwork and Ref. 646 for an authoritativ e review.
Formally a Lagrangian can be obtained from the expressionEq. (317) by extending
it
( )
x oX 1 1

2
LP|MD = mpl(s) EMI ] l% Rl(S) R|(S+l) EEO le g(S)
s=1 =1

(318)

with N P ctitious momerta Pfs) and correspnding (unphysical) ctitious masses
M 0. At this stagethe time dependenceof positions and momerta and thusthe time

ewlution in phasespace as generatedby Eq. (318) has no physical meaning. The

sole use of \time" is to parameterize the deterministic dynamical exploration of

con guration space. The trajectories of the positions in con guration space,can,

howewer, be analyzed similar to the onesobtained from the stochastic dynamics
that underliesthe Monte Carlo method.

The crucial ingrediert in ab initio 395:399:644404 35 opposed to stan-
dard 233:126:542,120:124;646:407 path integral simulations consistsin computing the
interactions Eg \on{the{y" likein abinitio moleculardynamics. In analogyto this
caseboth the Car{P arrinello and Born{Opp enheimer approadesfrom Sects.2.4
and 2.3, respectively, can be combined with any electronic structure method. The
rst implementation 3% wasbasedon the Car{P arrinello / density functional com-

bination from Sect. 2.4 which leadsto the following extended Lagrangian
e {x D E h |
Lap = 5 & ERS f g®fR g

P s=1 i )

X D E
(s) (s) (s)
+ i i j i

( )
X "X 1 2 X q 2
+ sMP RJY sMit3 RiY R T (319)
s=1 | =1
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where the interaction energy EXS[f ;g(®;fR,g®] at time slice s is de ned in
Eq. (75); note that hereand in the following the dots denotederivativeswith respect
to propagation time t and that EXS = minEXS. The standard Car{P arrinello
Lagrangian, seee.g. Eq. (41) or Eq. (58), is recovered in the limit P = 1 which
correspnds to classicalnuclei. Mixed classical/ quantum systemscan easily be
treated by represeting an arbitrary subsetof the nucleiin Eq. (319) with only one
time slice.

This simplest formulation of abinitio path integrals, however, is insu cien t for
the following reason: ergadicity of the trajectories and adiabaticity in the sense
of Car{P arrinello simulations are not guararteed. It is known sincethe very rst
molecular dynamics computer experimens that quasiharmonic systems (such as
coupledsti harmonic oscillators subject to weak anharmonicities, i.e. the famous
Fermi{P asta{Ulam chains) can easily lead to nonergalic behavior in the sampling
of phasespace?'®. Similarly \micro canonical" path integral molecular dynamics
simulations might lead to aninsu cien t exploration of con guration spacedepend-
ing on the parameters?’3. The sewerity of this nonergalicity problem is governed
by the sti ness of the harmonic intrachain coupling/ ! p and the anharmonicity of
the overall potential surface/ EKS=P which establishesthe coupling of the modes.
For a better and better discretization P the harmonic energy term dominates ac-
cording to P whereasthe mode{mixing coupling decreasedike  1=P. This
problem can be cured by attaching Nose{Hoover chain thermostats 38, seealso
Sect. 4.2, to all path integral degreesof freedom 637:644,

The secondissueis related to the separation of the power spectra assiated
to nuclear and electronic subsystemsduring Car{P arrinello ab initio molecular dy-
namics which is instrumental for maintaining adiabaticity, see Sect. 2.4. In ab
initio  molecular dynamics with classicalnuclei the highest phonon or vibrational
frequency! " is dictated by the physicsof the system,seee.qg. Fig. 2. This means
in particular that an upper limit is given by sti intramolecular vibrations which
do not exceed! ™ 5000cm ! or 150 THz. In abinitio path integral simula-
tions, on the cortraryi max-js given by ! p which actually divergeswith increasing
discretization as P. The simplest counteraction would be to compensatethis
artifact by decreasingthe ctitious electron mass until the power spectra are
again separatedfor a xed value of P and thus !If' This, howewer, would lead to
a prohibitiv ely small time step because t™* / ™ ~. This dilemma can be solved
by thermostatting the electronic degreesof freedomas well 395:399:644 ' seeSect. 4.2
for a related discussionin the context of metals.

Finally, it is known that diagonalizing the harmonic spring interaction in
Eg. (319) leadsto more e cient propagators %37:%44  One of these transforma-
tion and the resulting Nose{Hoover chain thermostatted equations of motion will
be outlined in the following section, seein particular Egs. (331){(337). In addi-
tion to keepingthe averagetemperature xed it is also possibleto generatepath
trajectories in the isobaric{isothermal N pT ensenble 46392 |nstead of using
Car{P arrinello ctitious dynamics in order to evaluate the interaction energy in
Eq. (318), which is implemented in the CPMPadkage 14, it is evidert that also
the Born{Opp enheimerapproac from Sect. 2.3 or the free energy functional from
Sect.4.3 canbe used. This route eliminates the adiabaticity problem and wastaken
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up e g in Refs 132;37;596;597,;428;429;333

A nal obsenation concerningparallel supercomputersmight be useful, seealso
Sect.3.9. It is evidert from the Lagrangian Eq. (319) and the resulting equations
of motion (e.g. Egs. (331){(337)) that most of the numerical workload comesfrom
calculating the ab initio forceson the nuclei. Given a xed path con guration
Eq. (316) the P underlying electronic structure problems are independent from
ead other and can be solved without communication on P nodesof a distributed
memory machine. Communication is only necessanto sendthe nal result, essen-
tially the forces,to a special node that computesthe quantum kinetic cortribution
to the energy and integrates nally the equations of motions. It is even conceiv-
able to distribute this task on di erent supercomputers,i.e. \meta{computing" is
within read for suc calculations. Thus, the algorithm is \embarrassingly parallel”
provided that the memory per node is su cien t to solve the complete Kohn{Sham
problem at a given time slice. If this is not the casethe electronic structure cal-
culation itself has to be parallelized on another hierarchical level as outlined in
Sect. 3.9.

4.4.3 AbInitio Path Centroids: Dynamics

Initially the moleculardynamicsapproad to path integral simulations wasinvented
merely asa trick in order to samplecon guration spacesimilar to the Monte Carlo
method. This perception changedrecerly with the introduction of the so{called
\centroid molecular dynamics" technique 192, seeRefs, 103:104:105,665,505,506:507 fqp
badkground information. In a nutshell it is found that the time ewlution of the
certers of massor certroids

1%
B

s0=1

RP(t) = R (320)

of the closed Feynman paths that represemn the quantum nuclei cortains quasi-
classicalinformation about the true quantum dynamics. The certroid molecular
dynamics approad can be showvn to be exact for harmonic potertials and to have
the correct classicallimit. The path certroids move in an e ectiv e potential which
is generatedby all the other modes of the paths at the given temperature. This
e ectiv e potential thus includes the e ects of quantum uctuations on the (qua-
siclassical) time ewolution of the certroid degreesof freedom. Roughly speaking
the trajectory of the path certroids can be regardedas a classicaltrajectory of the
system, which is approximately \renormalized" dueto quantum e ects.

The original certroid molecular dynamics technique 102:103:104,105665 relies on
the use of model potentials as the standard time{indep enden path integral simu-
lations. This limitation was overcomeindependertly in Refs. 469411 by combining
abinitio path integralswith certroid moleculardynamics. The resulting technique,
ab initio certroid molecular dynamics can be consideredas a quasiclassicalgener-
alization of standard ab initio molecular dynamics. At the sametime, it presenes
the virtues of the ab initio path integral technique 39°:399:644:404 {q generateexact
time{indep endent quantum equilibrium averages.
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Here, the so{called adiabatic formulation 105:390:106 of apinitio certroid molecu-
lar dynamics*!! is discussed.In closeanalogyto abinitio molecular dynamics with
classicalnuclei alsothe e ectiv e certroid potertial is generated\on{the{y" asthe
certroids are propagated. This is achieved by singling out the certroid coordinates
in terms of a normal mode transformation * and accelerating the dynamics of
all non{centroid modes arti cially by assigningappropriate ctitious masses. At
the sametime, the ctitious electron dynamicsa la Car{P arrinello is kept in order
to calculate e cien tly the ab initio forceson all modesfrom the electronic struc-
ture. This makesit necessaryto maintain two levels of adiabaticity in the course
of simulations, seeSect. 2.1 of Ref. 41! for a theoretical analysis of that issue.

The partition function Eqg. (315), formulated in the so-called\primitiv e" path
variablesfR| g(®, is rst transformed 644646 to a represemation in terms of the
normal modesf u; g®), which diagonalizethe harmonic nearest{neigtbor harmonic
coupling 1%, The transformation follows from the Fourier expansionof a cyclic
path

X e
RO = a®exp[2 i(s 1)(s® 1)=P] ; (321)
s0=1

wherethe coe cien ts fa; g® are complex. The normal mode variablesfu, g8 are
then givenin terms of the expansioncoe cien ts accordingto

u® = g®
u(P) = P+ =D

2 = Rel)

us Y=1m @) : (322)

Asscaiated with the normal modetransformation is a set of normal mode frequencies
f g given by
2 1
@s D= @s2=2p 1 cos 7(SP ) (323)
with @ = 0and (P) = 4P. Equation (321)is equivalert to direct diagonalization
of the matrix

Asso = 2 g0 s;s0 1 $;50+1 (324)

with the path periodicity condition Asp = Asp and Asp+1 = A1 and subsequen
use of the unitary transformation matrix U to transform from the \primitiv e"
variablesf R g®) to the normal mode variablesf u; g(>

p_X
RO =5 Ura
s0=1
1 X
u® = p— " UR®) : (325)
s0=1
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The eigervaluesof A when multiplied by P are preciselythe normal mode frequen-
ciesf g(®). Sincethe transformation is unitary, its Jacobianis unity. Finally, it is
corveniert to de ne a setof normal mode masses

M = G, (326)

that vary along the imaginary time axis s = 1;:::;P, where @ = 0 for the
certroid mode ufl).
Based on these transformations the Lagrangian correspnding to the ab initio
path integral exprezssedn normal modesis obtained 644
X X n
Lapi = % e g®; R u®iu®)
s=1 i )

D
S e e
ij i i
ij (
X R 4 2 X1 2
as) (s) s)| 2
+ SMIT SMEE uf
s=1 | =1 =1

; (327)

where the massesM |QS) will be de ned later, seeEqg. (338). As indicated, the
electronic energy E(®) is always evaluated in practice in terms of the \primitiv e"
path variablesfR| g® in Cartesian space. The necessantransformation to switch
forth and bad between\primitiv e" and normal mode variablesis easily performed
as given by the relations Eq. (325).

The chief advantage of the normal moderepresetation Eq. (325) for the presen

purposeis that the lowest{order normal mode ul(l)

1 X
W =Rf= 5" R (328)
s0=1

turns out to be identical to the certroid Rf of the path that represens the Ith

nucleus. The certroid force can also be obtained from the matrix U according
to 644

G _ i)f’ @& "
@ P, R®

sinceU s = UY; = 1:p P and the remaining normal mode forcesare given by

(329)

X (s°

%:plz Usso@z—(so)) fors=2;:::;P (330)

@|| P s0=1 @RI
in terms of the \primitiv e" forces @ (9=@'”. Here, E on the leffhand({side
with no superscript (s) refersto the averageelectronicenergyE = (1=P) 5:1 E®
from which the forceshave to be derived. Thus, the force Eq. (329) acting on eath
centroid variable ul(l), I = 1;:::N, is exactly the force averagedover imaginary
time s = 1;:::; P, i.e. the centroid force on the Ith nucleus as already given in
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Eq. (2.21) of Ref. 544, This is the desiredrelation which allowsin certroid molecular
dynamicsthe certroid forcesto be simply obtained asthe averageforce which acts
on the lowest-order normal mode Eq. (328). The non{centroid normal modesufs),
s = 2;3;:::; P of the paths establish the e ective potential in which the certroid
moves.

At this stagethe equationsof motion for adiabatic ab initio certroid molecular
dynamics#!! can be obtained from the Euler{Lagrange equations. Theseequations
of motion read

MW @ = 1% @ fig9ifRig" 331
Y P (s) (331
s=1 @R,
1 » n (s9
VEQHRES _C(@; 5 E g0 R uf iy
@II; s0=1
M2 M W s= 2P (332)
Ef g®:fR,g® X
“(9) = i9 e 19 i(js) J.(S) ) =101 P (333)

i i

where ul(s;) denotes the Cartesian componerts of a given normal mode vector

u® = (uf%;ul%;uf%). In the presen scheme, independert Nose{Hoover chain
thermostats 8 of length K are coupledto all non{centroid mode degreesof free-
doms= 2;:::;P

2
Q= M W T T QL (334)

2
QU = Q" k1 keT Q' k Ak (@ kk)ik= 2 K(335)

and all orbitals at a given imaginary time slice s are thermostatted by one suc
thermostat chain of length L "
X
=2 PO T ey (336)
i
e (s) e (9 2 1 e (5) (9) e .
[l Qri1 41 - Qi 4 @ w) =2l 5 (337)
e
note that for standard ab initio path integral runs as discussedin the previous
section the certroid mode should be thermostatted as well. The desired ctitious
kinetic energy of the electronic subsystemT? can be determined basedon a short
equivalent classical Car{P arrinello run with P = 1 and using again the relation
= o = 2T2=6N2 where N2 is the number of orbitals. The massparametersf QFfg
asseiated to the orbital thermostats are the sameas those de ned in Eq. (271),
whereasthe single massparameter Q" for the nuclei is determined by the harmonic
interaction and is givenby Q" = kgT=!2 = =P. The characteristic thermostat
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frequency of the electronic degreesof freedom!  should again lie above the fre-
guencyspectrum assaiated to the ctitious nucleardynamics. Theseis the method
that is implemented in the CPMPackage 142

An important issuefor adiabatic ab initio certroid molecular dynamics 4! is
how to establishthe time{scale separation of the non{centroid modescomparedto
the certroid modes. This is guararteed if the ctitious normal mode massesv |qs)
are takento be

M = M,
M= MO s=2:0p (338)

whereM, is the physial nuclear mass,M l(s) are the normal mode masse<q. (326),
and is the \centroid adiabaticity parameter”; note that this corrects a misprint
of the de niton of M® for s 2 in Ref. 1. By choosing 0 < 1, the
required time{scale separationbetweenthe certroid and non{centroid modescanbe
cortrolled sothat the motion of the non{centroid modesis arti cially accelerated,
seeSect. 3 in Ref. 4! for a systematic study of the {dependence. Thus, the
certroids with assaiated physical massesnove quasiclassicallyin real{time in the
certroid e ectiv e potential, whereasthe fast dynamics of all other nuclear modes
s> 1is ctitious and senesonly to generatethe certroid e ectiv e potential \on{

the{y". In this sense (or rather M) is similar to , the electronic adiabaticity
parameter in Car{P arrinello molecular dynamics.

4.4.4 Other Approaches

It is evidernt from the outset that the Born{Opp enheimer approach to generate
the ab initio forces can be used as well as Car{P arrinello molecular dynamics
in order to generate the ab initio forces on the quantum nuclei. This varia-
tion was utilized in a variety of investigations ranging from clusters to molecular
solids 132:37:596;597,428,429;333 * C|osely related to the abinitio path integral approad
as discussedhere is a method that is basedon Monte Carlo sampling of the path
integral 672, It is similar in spirit and in its implemertation to Born{Opp enheimer
molecular dynamics sampling as long as only time{a veragedstatic obsenablesare
calculated. A semiempirical(\ cndo " and\indo ") versionof Born{Opp enheimerab
initio path integral simulations was alsodevised®® and applied to study muonated
organic molecules®56:657,

A non{self{consistert approad to abinitio path integral calculationswasadvo-
cated and usedin a seriesof publications dewoted to study the interplay of nuclear
guantum e ects and electronic structure in unsaturated hydrocarbons like ben-
zene 544:503:81:543:504 - According to this philosophy, an ensenble of nuclear path
con gurations Eq. (316) is rst generatedat nite temperature with the aid of a
parameterizedmodel potential (or using atight{binding Hamiltonian 5°4). In a sec-
ond, independent step electronic structure calculations (using Pariser{Parr{P ople,
Hubbard, or Hartree{Fock Hamiltonians) are performed for this xed ensenble of
discretized quantum paths. The crucial di erence comparedto the self{consisten
approades presenied above is that the creation of the thermal ensenble and the
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subsequenh analysis of its electronic properties is performed using di erent Hamil-
tonians.

Se\eral attempts to treat also the electronsin the path integral formulation {
instead of using wavefunctions as in the ab initio path integral family { were
published 606:119:488:449:450  These approadies are exact in principle, i.e. non{
adiabaticity and full electron{phonon coupling is included at nite temperatures.
Howewer, they su er from sewere stability problems 2! in the limit of degenerate
electrons,i.e. at very low temperatures comparedto the Fermi temperature, which
is the temperature range of interest for typical problemsin chemistry and materials
science.Recern progresson computing electronic forcesfrom path integral Monte
Carlo simulations was also achieved 7%,

More traditional approades use a wavefunction represemation for both the
electronsin the ground state and for nuclear density matrix instead of path in-
tegrals. The advantage is that real{time ewlution is obtained more naturally
comparedto path integral simulations. A review of such methods with the em-
phasis of computing the interactions \on{the{y" is provided in Ref. 158, An ap-
proximate wavefunction{based quantum dynamics method which includes seeral
excited statesand their couplingswas alsodevisedand used 385:386:387:45 - An alter-
native approad to approximate quantum dynamics consistsin performing instan-
ton or semiclassicalab initio dynamics 32°47. Also the approximate vibrational
self{consistert eld approac to nuclear quantum dynamics was combined with
\on{the{y" MP2 electronic structure calculations ?2.

5 Applications: From Materials Science to Bio chemistry

5.1 Intr oduction

Abinitio molecular dynamicswascalled a \virtual matter laboratory" 234, a notion
that is fully justied in view of its relationship to experimens performed in the
real laboratory. Ideally, a systemis preparedin someinitial state and than ewlves
according to the basic laws of physics { without the need of experimental input.
It is clear to ewery practitioner that this viewpoint is highly idealistic for more
than one reason,but still this philosophy allows oneto compute obsenables with
predictive power and also implies a broad range of applicabilit y.

It is evidert from the number of papers dealing with ab initio molecular dy-
namics, seefor instance Fig. 1, that a truly comprehensie survey of applications
cannot be given. Instead, the strategy chosenis to provide the readerwith a wealth
of referencesthat try cover the full scope of this approad { instead of discussing
in depth the physics or chemistry of only a few speci ¢ applications. To this end
the selectionis basedon a generalliterature seard in order to suppresspersonal
preferencesas much as possible. In addition the emphasislies on recen applica-
tions that could not be coveredin earlier reviews. This implies that seweral older
key referencepapers on similar topics are in generalmissing.
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5.2 Solids, Polymers, and Materials

The rst application of Car{P arrinello molecular dynamics 1% dealt with silicon,
one of the basic materials in semiconductorindustry. Classic solid{state applica-
tion of this technique focus on the properties of crystals, such as those of CuCl

where anharmonicity and o {center displacemens of the Cu along the (111) di-

rections were found to be important to describe the crystal structure as a func-
tion of temperature and pressure®*. Various properties of solid nitromethane %47,

crystalline nitric acid trih ydrate %2, solid benzene*?°, stage{l alkali{graphite in-

tercalation compounds 286:287 and of the one-dimensionalintercalation compound
2HgS SnBr, %30 weredeterminedbasedon rst principles. The molecular solid HBr

undergcesvarious phasetransitions upon compression.The dynamical behavior of
one of these phases,disorderedHBr{l, could be claried using ab initio molecular
dynamics 313, Structure, phasetransitions and short{time dynamics of magnesium
silicate perovskites were analyzedin terms of ab initio trajectories 67°. The A7 to

simple cubic transformation in As wasinvestigatedusingabinitio moleculardynam-

ics at constart{pressure®®®. By applying external pressurethe hydrogen sublattice

was found to undergo amorphization in Mg(OH), and Ca(OH), a phenomenon
that was interpreted in terms of frustration 5. Properties of solid cubane CgHg

were obtained in constart pressuresimulations and comparedto experimert 54,

Ab initio simulations of the graphitization of at and stepped diamond (111) sur-
facesuncovered that the transition temperature depends sensibly on the type of
the surface3?’.

Sliding of grain boundariesin aluminum asatypical ductile metal wasgenerated
and analyzedin terms of atomistic rearrangemets 432, Microfracture in a sample
of amorphoussilicon carbide wasinduced by uniaxial strain and found to induce Si
segregationat the surface??®. The early stagesof nitride growth on cubic silicon
carbide including wetting were modeled by depositing nitrogen atoms on the Si{
terminated SiC(001) surface??.

Classicalproton di usion in crystalline silicon at high temperatureswasan early
application to the dynamics of atomsin solids 3. Using the abinitio path integral
technique 395:399:644:404 ' geeSect. 4.4 the preferred sites of hydrogen and muonium
impurities in crystalline silicon 428:42% or the proton positionsin HCI  nH,0 crys-
talline hydrates > could belocated. The radiation{induced formation of H defects
in c{Si via vacanciesand self{interstitials was simulated by ab initio molecular dy-
namics’®. The classicaldi usion of hydrogenin crystalline GaAs was followed in
terms of di usion paths %8 and photoassistedreactivation of H{passivated Si donors
in GaAs was simulated basedon rst principles #3°. Oxygen di usion in p{doped
silicon can be enhancedby adding hydrogen to the material, an e ect that could
be rationalized by simulations °7. Ab initio dynamics helped in quantifying the
barrier for the di usion of atomic oxygenin a model silica host 2. The microscopic
mechanism of the proton di usion in protonic conductors, in particular Sc{doped
SrTiO3 and Y{dop ed SrCe0;, is studied via ab initio molecular dynamics, where
is it found that covalert OH{b onds are formed during the process®®!. lonic dif-
fusion in a ternary superionic conductor was obtained by ab initio dynamics 77,
Proton motion and isomerization pathways of a complex photochromic molecular
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crystal composedof 2{(2,4{dinitrob enzyl)pyridine dyeswas generatedby ab initio
methods %16,

Also materials properties of polymers are investigated in quite some detail.
Early applications of semiempirical zdo molecular dynamics ¢ were dewted to
defectsin conducting polymers, in particular to solitons, polaronsand alkali doping
in polyacetylene 666:667 aswell asto muonium implanted in transand cis polyacety-
lene2%°, More recert are calculations of Young's modulus for crystalline polyethy-
lene 27, soliton dynamics in positively charged polyacetylene chains 2°, charge
localization in doped polypyrroles 149, chain rupture of polyethylene chains under
tensile load 533, the in uence of a knot on the strength of a polymer strand 53*, or
ion di usion in polyethylene oxide 4°°.

5.3 Surfaces, Interfaces, and Adsortates

A host of studies focusing on atoms and in particular on moleculesinteracting
with surfacesappeared over the years. Recer studies focussedfor instance on
C,H3, CyHy4, and trimeth ylgallium adsorbateson the GaAs(001){(2 4) surface?*,
thiophene on the catalytically active MoS,(010) 52 or RuS, %8 surfaces, small
moleculeson a nitric acid monohydrate crystal surface®?4, CO on Si(001) 314, small
moleculeson TiO, %5441 sulfur on Si(100) at various coverages’?’, and sulfuric
acid adsorbed on ZrO,(101) and ZrO,(001) 26°,

Specic to ab initio molecular dynamics is its capability to describe also
chemisorption aswell asdynamical processe®n (and of) surfacesincluding surface
reactions °%°. The ab initio calculations of surface phononsin semiconductorsur-
facescan be basedon the frozen{phonon, linear{response or nowadays molecular
dynamics approades, seeRef. 218 for a discussionand comparison. A review on
the structure and energeticsof oxide surfacesincluding molecular processesccur-
ring on sud surfacesis provided in Ref. 235, whereasRef. 256 concerrates on the
interaction of hydrogenwith cleanand adsorbatecovered metal and semiconductor
surfaces.

Recernt applications in surfacescienceinclude the transition from surfacevibra-
tions to liquid{lik edi usional dynamicsofthe Ge(111)surface®%’, the di usion of Si
adatomson a double{layer stepped Si(001) surface33, the structure of chemisorbed
acetylene on the Si(001){(2 1) surface %23, chemisorption of quinizarin on {
Al,03 212:213 the diusion of a single Ga adatom on the GaAs(100){c(4 4) sur-
face3%”, homoepitaxial crystal growth on Si(001) and the low{temp erature dynam-
ics of Si(111){(7 7) 595:611 disscciation of an H,O moleculeon MgO 3%8:3%° disso-
ciation of Cl, on GaAs(110) 38, chlorine adsorption and reactions on Si(100) %1,
molecular motion of NHz on MgO 3%8, dynamics and reactions of hydrated {
alumina surfaces?®®, molecular vs. dissciative adsorption of water layers on
MgO(100) as a function of coverage %48, oxidation of CO on Pt(111) &7%, the
reaction HCl + HOCI ! H,O + Cl, asit occurson an ice surface®’3, or desorp-
tion of D, from Si(100)2°°. Thermal cortraction, the formation of adatom-vacancy
pairs, and nally premelting was obsered in ab initio simulations of the AI(110)
surfaceat temperatures up to 900K ! Early stagesof the oxidation of a Mg(0001)
surface by direct attack of molecular O, was dynamically simulated ¢ including
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the penetration of the oxidation layer into the bulk. Similarly, the growth of an
oxide layer was generatedon an Si(100) surface 3.

The water{Pd(100), water{O/Pd(100) and water{Si(111) interfaceswere simu-
lated basedon ab initio molecular dynamics 336:655, Water covering the surface of
a microscopicmodel of muscovite mica is found to form a two{dimensional network
of hydrogen bonds, called two{dimensional ice, on that surface **’. The metal{
organic junction of monolayersof Pd{p orphyrin and peryleneon Au(111) wasana-
lyzed using an ab initio approac 3°°. An interesting possibility is to compute the
tip{surface interactions in atomic force microscopy ase.g. donefor a neutral silicon
tip interacting with an InP(110) surface®® or Si(111) 481482,

5.4 Liquids and Solutions

Molecular liquids certainly belongto the classicrealm of molecular dynamics simu-
lations. Water was and still is a challenge®®! for both experiment and simulations
due to the directional nature and the weaknessof the hydrogen bonds which leads
to delicate ass@iation phenomena. Pioneering ab initio simulations of pure wa-
ter at ambient 352 and supercritical conditions 2°° were reported only a few years
ago. More recertly, thesegradiernt{corrected density functional theory{based simu-
lations were extendedinto seweral directions 587:573:575:576:579:118 | the meantime
(minimal{basis) Hartree{Fock ab initio molecular dynamics 2% aswell asmore ap-
proximate schemes*>® were also applied to liquid water. Since chemical reactions
often occur in agueousmediathe solvation properties of water are of utmost impor-
tance sothat the hydration of ions 403:620:621;377:502 gnd small molecules353:354:433
wasinvestigated. Similarly to water liquid HF is a strongly assiated liquid which
features short{liv ed hydrogen{bonded zig{zag chains ?'. Another assaiated lig-
uid, methanol, wassimulated at 300K using an adaptive nite{element method 534
in conjunction with Born{Opp enheimermolecular dynamics®3. In agreemen with
experimertal evidence the majorit y of the moleculesis found to be engagedn short
linear hydrogen{bonded chains with somebranching points 83°. Partial reviewson
the subject of ab initio simulations as applied to hydrogen{bonded liquids can be
found in the literature 586:406:247,

The ab initio simulated solvation behavior of \unbound electrons" in liquid
ammonia at 260 K wasfound to be consistert with the physical picture extracted
from experiment %1% Similarly, abinitio moleculardynamicsof dilute 553:293 and
concerrated 5%° molten K, (KCl); x mixtures were performed at 1300K ertering
the metallic regime. The structure of liquid ammonia at 273 K was investigated
with avariety of techniquessothat limitations of using classicalnuclei, simple point
charge models, small systems,and various density functionals could be assessed®.

Ab initio molecular dynamicsis alsoan ideal tool to study other complex uids
with partial covalency, metallic uids, and their transformations as a function of
temperature, pressure,or concertration. The properties of water{free KF nHF
melts depend crucially on poly uoride anionsHnF,,,; and solvated K* cations.
Abinitio simulations allow for a direct comparisonof thesecomplexesin the liquid,
gaseousand crystalline phase®®. The changesof the measuredstructure factor
of liquid sulfur as a function of temperature can be rationalized on the atomistic
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level by various chain and ring structures that can be statistically analyzedin ab
initio molecular dynamics simulations 3!, Liquid GeSe is characterized by strong
chemical bondsthat imposea structure beyond the usual very short distancesdue
to network formation 416, Zintl{allo yssuc asliquid NaSn®%? or KPb 56 have very
interesting bonding properties that manifestthemsehesin strong temperature{ and
concenration dependencesof their structure factors (including the appearanceof
the so{called rst sharp diraction peak °%°) or electric conductivities.

Metals are ideal systemsto investigate the metal{insulator transition upon ex-
pansion of the liquid 346:%3 or melting %8°. Liquid copper was simulated at 1500K:
structural and dynamical data were found to be in excellert agreemen with exper-
imental 464, Transport coe cien ts of liquid metals (including in particular extreme
conditions) can also be obtained from rst principles molecular dynamics using the
Green{Kubo formalism 571592, The microscopicmecanism of the semiconductor{
metal transition in liquid As,Se; could be rationalized in terms of a structural
change as found in ab initio simulations performed as a function of temperature
and pressure®®3. Theiii{v semiconductors,sud as GaAs, assumemetallic behav-
ior when melted, whereasthe ii{vi semiconductor CdTe doesnot. The dierent
conductivities could be traced badk to pronouncedstructural dissimilarities of the
two systemsin the melt 236,

5.5 Glassesand Amorphous Systems

Related to the simulation of dynamically disordered uid systemsare investiga-
tions of amorphousor glassymaterials. In view of the sewere limitations on system
sizeand time scale(and thus on correlation lengths and times) ab initio molecular
dynamicscanonly provide fairly local information in this sense.Within theseinher-
ernt constraints the microscopicstructure of amorphousselenium3%4 and tetrahedral
amorphouscarbon 384, the amorphization of silica ®8, boron doping in amorphous
Si:H 8 or in tetrahedral amorphouscarbon 2?7, aswell asthe Raman spectrum 45°
and dynamic structure factor #%® of quartz glassand their relation to short{range
order could be studied.

The properties of supercooled CdTe were comparedto the behavior in the lig-
uid state in terms of its local structure 237, Defectsin amorphousSi; xGe, alloys
generated by ab initio annealing were found to explain ESR spectra of this sys-
tem 329, The infrared spectrum of a sample of amorphous silicon was obtained
and found to be in quantitativ e agreemen with experimertal data %2, The CO;
insertion into a model of argon{bombarded porous SiO, was studied °%. In partic-
ular the electronic properties of amorphous GaN were investigated using ab initio
methods 01,

Larger systemsand longer annealingtimes are accessiblafter intro ducing more
approximations into the rst principle treatment of the electronic structure that
underliesab initio molecular dynamics. Using such methods %!, a host of di erent
amorphouscarbon nitride sampleswith various stoichiometries and densitiescould
be generatedand characterized in terms of trends 7. Similarly, the pressure{
inducedglass{to{crystal transition in condensedsodium wasinvestigated?? and two
structural modelsof amorphousGaN obtained at di erent densitieswere examined
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in terms of their electronic structure 01,

5.6 Matter at Extreme Conditions

A strong advantage of ab initio simulations is their predictive power also at ex-
treme conditions, an area where molecular dynamics relying on tted potential
models might encourter seweredi culties. Thus, high pressuresand/ or high tem-
peratures sud as those in the earth's core, on other planets, or on stars can be
easily achieved in the virtual laboratory. This opens up the possibility to study
phasetransformations and chemical reactions at such conditions 6. Furthermore,
conditions of geoptysical and astrophysical interest can nowadays be produced in
the real laboratory, using techniques basedon diamond anvil cells, shock waves,or
lasers. The limitations of theseexperimental approadesare, however, not so much
related to generating the extreme conditions as one might expect, but rather to
measuringobsenables.

In the virtual laboratory this information is accessibleand the melting of
diamond at high pressure???, the phase transformation from the antiferromag-
netic insulating {O, phaseto a nonmagnetic metallic molecular {O, phase®®’,
the phase diagram of carbon at high pressuresand temperatures 26! as well as
transformations of methane '3, carbon monoxide °*, molecular CO, 267:5%8  water
ice 363:364:58:50:51:52 " g 305:337:65:66:333 gnd hot uid S hydrogen, solid Ar(H ,), 53
under pressurecould be probed. Along similar lines properties of a liquid Fe{S mix-
ture under earth's core conditions 1, the viscosity of liquid iron 899:592 the sound
velocity of densehydrogen at conditions on jupiter 6, the phasediagram of water
and ammonia up to 7000 K and 300 GPa 8, the laser heating of silicon 570:572
and graphite >’ etc. were investigated at extreme state points. A review on ab
initio simulations relevant to minerals at conditions found in the earth's mantle is
provided in Ref. 683,

5.7 Clusters, Fullerenes,and Nanotubes

Investigations of clusters by ab initio molecular dynamics were among the rst
applications of this technique. Here, the feasibility to conduct nite{temp erature
simulations and in particular the possibility to seard globally for minima turned
out to be instrumental 302:31:303;550,517:519 " gee e.g. Refs. 16321332 for reviews.
Sudh investigations focus more and more on clusters with varying composi-
tion 518:293:199:348;349161 = Clyster melting is also accessibleon an ab initio foot-
ing 84:531:525:526 and molecular clusters, complexesor cluster aggregatesare actively
investigated 612;645;613;70;596;597;133;701;524

lii{v semiconductorclusters embeddedin sodalite shov quantum con nement
and sizee ects that can be rationalized by ab initio simulations 625:95, Supported
clusters such as Cu, on an MgO(100) surfaceare found to di use by \rolling" and
\t wisting" motions with very small barriers 4. The di usion of protonated helium
clustersin various sodalite cagesvasgeneratedusingabinitio dynamics®8. Photo{
induced structural changesin Se chains and rings were generated by a vertical
homo ! lumo excitation and monitored by ab initio dynamics 3%, With the
discovery and production of nite carbon assenblies ab initio investigations of the
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properties of fullerenes®:17:451 the growth processof nanotubes 127:%2:72 or the
electrical conductivity of nanowires 38272 pecameof great interest.

5.8 Complexand Floppy Molecules

The determination of the structure of a RNA duplex including its hydration wa-
ter 311, investigations of geometry and electronic structure of porphyrins and por-
phyrazines 3°¢, and the simulation of a bacteriochlorophyll crystal 2! are some
applications to large molecules. Similarly, the \carb oplatin" complex %23{ a drug
with large ligands { aswell asthe organometallic complex Alg(3) *8 { an electro-
luminescen material usedin organiclight{emitting diodes{ wereinvestigatedwith

respect to structural, dynamical and electronic properties.

The organometallic compound C,H,Li, has an unexpected ground{state struc-
ture that was found by careful ab initio simulated annealing °?*. In addition, this
complex shaws at high temperatures intramolecular hydrogen migration that is
mediated via a lithium hydride unit 2!, Ground{state uxionalit y of protonated
methane CH; 397:408 including someisotopomers“® and of protonated acetylene
CoH; 4% was showvn to be driven by quantum e ects. The related dynamical
exdhange of atoms in these molecules can also be excited by thermal uctua-
tions 630:85:401 " |n addition it was shovn that CH; is three{certer two{electron
bonded and that this bonding topology doesnot qualitativ ely changein the pres-
enceof strong quantum motion 4%2. The uxional behavior of the protonated ethane
molecularion C;H3 wasinvestigated by ab initio molecular dynamics as well 172,

The neutral and ionized SiHs and Si;H3z speciesdisplay a rich dynamical be-
havior which was seenduring ab initio molecular dynamics simulations 246, The
lithium pentamer Lis was found to perform pseudorotational motion on a time
scaleof picosecondsor faster at temperatures as low as 77 K 231, Using ab initio
instanton dynamics the inversion splitting of the NH3, ND3, and PH3 molecules
due to the umbrella mode was estimated 32°. Similarly, a semiclassicalab initio
dynamics approad as usedto compute the tunneling rate for intramolecular pro-
ton transfer in malonaldetyde 4’. Ab initio simulated annealing can be used to
explore the potential energy landscape and to locate various minima, sud as for
instance donefor protonated water clusters ¢’3. Molecular dynamics simulations of
the trimeth ylaluminum AI(CH 3)3 have beencarried out in order to investigate the
properties of the gas{phasedimer ?°. The structures and vibrational frequencies
of tetrathiafulv alenein dierent oxidation states was probed by ab initio molec-
ular dynamics 324, Implanted muons in organic molecules (benzene, 3{quinolyl
nitronyl nitroxide, para{pyridyl nitronyl nitroxide, phenyl nitronyl nitroxide and
para{nitrophenyl nitronyl nitroxide) were investigated using approximate ab ini-
tio path integral simulations that include the strong quantum broadening of the
muonium 656:657,

5.9 Chemial Reactions and Transformations

Early applications of ab initio molecular dynamics were dewoted to reactive scat-
tering in the gasphasesud asCH, + Hy ! CH; % orH + CH; ! CHj +
H 365, The \on{the{y" approac can be comparedto classicaltrajectory cal-
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culations on very accurate global potential energy surfaces. This was for instance
done for the well{studied exothermic exchange reaction F + H, ! HF + H in
Ref. 555, Other gasphasereactions studied wereLi(2p) + Hy ! LiH(') + H(!S)
in Ref. 37, F + C,Hs ! CoH3F + Hin Ref. 8, 203! 30, in Ref. 10, F +
CH3Cl! CH3F + Cl in Ref. 6%, hydroxyl radical with nitrogen dioxide radi-
cal 15, formaldehyde radical anion with CH3Cl in Ref. 7%, the reduction of OH

with 3-hexanone?'® or the hydrolysis (or solwolysis, Sy 2 nucleophilic substitution)
of methyl chloride with water 23, Photoreactions of moleculesslowvly becomeac-
cessibleto abinitio dynamics, sud asfor instancethe cis{ transphotoisomerization
in ethylene 46, excited{state dynamics in conjugated polymers "%, bond breaking
in the Sg ring 52, transformations of diradicales %1%, or the Sy ! S; photo
isomerization of formaldimine 214,

In addition to allowing to study complexgasphasechemistry, abinitio molecular
dynamics openedthe way to simulate reactionsin solution at nite temperatures.
This allows liquid state chemistry to take place in the virtual laboratory where
thermal uctuations and solvation e ects are included. Someapplications out of
this emerging eld are the cationic polymerization of 1,2,5{trio xane 46:147 the
initial steps of the disscciation of HCI in water 3°3:3%  the formation of sulfuric
acid by letting SOs react in liquid water 42* or the acid{catalyzed addition of water
to formaldehyde 422.

Proton transfer is a processof broad interest and implications in many elds.
Intramolecular proton transfer wasstudied recerly in malonaldehyde 6947 a Man-
nich base'®?, and formic acid dimers %?’. Pioneeringab initio molecular dynamics
simulations of proton and hydroxyl di usion in liquid water were reported in the
mid nineties 840:641:642  Related to this problem is the auto{dissociation of pure
water at ambient conditions 628:629  Since recerily it becamepossibleto study
proton motion including nuclear quantum e ects 645:419:412 py ysing the ab initio
path integral technique 395:399:644:404 seeSect. 4.4.

Abinitio moleculardynamicsalsoallowschemicalreactionsto take placein solid
phases,in particular if a constart pressuremethodology is used °¢, seeSect. 4.2.
For instance solid state reactions such as pressure{induced transformations of
methane® and carbon monaxide >* or the polymerization >’ and amorphization ¢
of acetylene were investigated.

5.10 Catalysis and Zeolites

The polymerization of ole nes is an important classof chemical reactions that is
operated on the industrial scale. In the light of sud applications the detailed un-
derstanding of these reactions might lead to the designof novel catalysts. Driven
by sudt stimulations seweral catalysts were investigated in detail sut as metal
alkyles ©%°, platinum{phospine complexes!4!, or Grubbs' ruthenium{phosphine
complexes?, metallocenes®%. In addition, elemenary steps of various chemi-
cal processesvere the focus of ab initio molecular dynamics simulations. Among
those are chain branching and termination stepsin polymerizations %%, ethylene
metathesis !, \living polymerization" of isoprenewith ethyl lithium 22, Ziegler{
Natta heterogenouspolymerization of ethylene %89, Reppe carbonylation of Ni{
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CH=CH , using CI(CO), 2%, or Sakakura{T anaka functionalization 3¥2. As in the
real laboratory, side reactions can occur alsoin the virtual laboratory, suc ase.g.
the {hydrogen elimination as an unpredicted reaction path 3. A digressionon
using nite{temp erature abinitio dynamicsin homogeneougatalysis researt can
be found in Ref. 897,

Zeolites often sere as catalysists as well and are at the sametime ideal can-
didates for nite{temp erature ab initio simulations in view of their chemical com-
plexity. A host of di erent studies 559:100;268;614;545;206;560;598;207;315;208;209;546 ~q-
tributed greatly to the understanding of thesematerials and the processe®ccurring
therein sudh as the initial stagesof the methanol to gasoline corversion °°. Het-
erogenouscatalysts are often poisoned,which was for instance studied in the case
of hydrogen disscciation on the Pd(100) surfacein the presenceadsorbed sulfur
layers 257,

5.11 Biophysics and Biochemistry

Applications of abinitio molecular dynamicsto moleculesand processe®f interest
in life sciencesbegin to emerge!® 113, Investigations related to theseinterests are
investigationsof the crystal structure of a hydrated RNA duplex (sodium guanylyl{
3'{5'{cytidine nona{hydrate) 3!1, structure modelsfor the cytochrom P450enzyme
family 547:548:549 nanotubular polypeptides 12, a syrthetic biomimetic model of
galactose oxidase 523, aspects of the processof vision in form of the 11{cis to
all{ trans isomerization in rhodopsin 67:68:474 interconversion pathways of the pro-
tonated {ionone Schi base®'®, or of the binding properties of small molecules
of physiological relevance suth as O,, CO or NO to iron{p orphyrines and its com-
p|eX95527;528;529_

Proton transport throught water wires is an important biophysical processin
the chemiosmotic theory for biochemical ATP production. Using the ab initio
path integral technique 395:399:644:404 the properties of linear water wires with an
excessproton were studied at room temperature 4°. Amino acids are important
ingrediens as they are the building blocks of polypeptides, which in turn form
channels and pores for ion excange. Motivated by their ubiquity, glycine and
alanine as well as some of their oligopeptides and helical (periodic) polypeptides
were studied in great detail 323,

5.12 Outlook

Ab initio molecular dynamics is by now not only a standard tool in academicre-
seard but also becomesincreasingly attractiv e to industrial researbers. Analysis
of data bases,seecaption of Fig. 1 for details, uncoversthat quite a few companies
seemto beinterestedin this methodology. Researbersa liated to Bayer, Corning,

DSM, Dupont, Exxon, Ford, Hitachi, Hoedst, Kodak, NEC, Philips, Pirelli, Shell,
Toyota, Xerox and others cite the Car{P arrinello paper Ref. 1% or use ab initio

molecular dynamics in their work. This trend will certainly be enhancedby the
availability of e cien t and generalabinitio molecular dynamics padkageswhich are
commercially available.
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